

Catalyst Network Research: a new
Consensus Protocol

Authors: Darren Oliveiro-Priestnall, Dr. Pauline Bernat, Joseph Kearney and

Francesca Sage-Ling

Version 1.2

Currently under review

Abstract
Distributed Ledger Technology (DLT) is undoubtedly one of the most disruptive new

technologies to have emerged over the past decade. When the paper [1] was published in 2008

by an unknown author under the famous pseudonym Satoshi Nakamoto, the world was shaken

by a global economic crisis that considerably deteriorated our trust in central authorities. The

new protocol embedded in this paper proposed a revolutionary approach to conduct transfers

of digital assets, without the need of a third party, thus opening the door to a new economical

approach with greater transparency, privacy and prosperity for all. Bitcoin was the first

successful public blockchain to demonstrate the potential for this technology to be used as a

decentralised yet trusted store of value. Building on this early success, next generation

blockchains such as Ethereum and Neo demonstrated the potential for blockchain platforms to

provide decentralised computing services, enabling more complex applications and reaching

more markets than straight forward storage of value. Subsequent blockchains and distributed

ledgers established use-cases in many other areas notably through the use of Internet of Things

devices and machine learning techniques [2].

As Bitcoin and other projects grew in popularity it became apparent that real challenges

awaited this new technology. Indeed, the early systems were not built to meet the demand for

services at scales comparable to those of cloud services. The main challenge of blockchain is to

solve the so-called blockchain trilemma, building a system that can process a high throughput

of transactions while ensuring the system integrity and accessibility to all. Additional concerns

arise notably around environmental impact and the risk of power centralisation that would

inevitably lead to the level of wealth disparity we observe in a world governed by centralised

systems. A plethora of projects started with in mind to tackle these challenges (and more).

Building a blockchain or distributed ledger is a complex task and for that reason most

existing projects are clones, also known as forks, made from a small number of original

blockchains. This allows organisations to benefit from already developed blockchains while

modifying the elements relevant to their field. The problem with such an approach is that it

restricts truly original thinking about wider technological issues such as how a network can

scale or operate in environments for which the original Bitcoin blockchain was never designed.

As a result of forking from the past, the fundamental issues restricting present blockchain

technologies such as scale, privacy, performance and interoperability remain as much of a

challenge today as when these early blockchains were first developed [3].

Catalyst took a very different approach when designing a new core protocol ledger and

accompanying distributed computing capability, starting from a set of operational

requirements and developing a cohesive system that delivers to those requirements. The code

base developed by Catalyst researchers and engineers is original and will be made available as

an open-source software. To solve the fundamental issues inhibiting the growth of distributed

ledger-based computing, engineers and researchers at Catalyst were and are encouraged to ask

and rethink fundamental questions about the new distributed operating system they envisage.

3

Learning from popular and new blockchains and distributed ledgers as well as the wider IT

industry, the team developed Catalyst, a full stack distributed network built to fulfil the real-

world potential of DLT, to enable the next generation of distributed computing applications and

business models. This paper presents the consensus protocol of Catalyst Network.

4

Contents

Abstract ... 2

Glossary .. 6

Introduction .. 8

Chapter 1 .. 10

Technical Specifications .. 10

1.1 Choice of Elliptic Curve ... 11

1.2 Choice of Hashing Algorithm .. 12

1.3 Zero-Knowledge Proofs .. 12

1.4 Catalyst Tokens ... 13

Chapter 2 .. 16

Peer-to-Peer Catalyst Network ... 16

2.1 Peer Role Types .. 16

2.2 Nodes Registration ... 17

2.2.1 Producer nodes selection ... 17

2.2.2 Worker nodes selection ... 18

Catalyst Distributed Ledger ... 21

3.1 Ledger Database Architecture .. 21

3.2 Accounts on Catalyst .. 22

3.3 CLS Structure .. 22

Catalyst Transactions .. 26

4.1 Transaction Types ... 26

4.2 Transaction Structure ... 26

4.3 Transaction Entries ... 27

4.4 Transaction Signature ... 29

4.5 Transaction Validity .. 32

Catalyst Consensus Mechanism .. 34

5.1 Background ... 34

5.1.1 Motivation .. 34

5.1.2 Naming Convention .. 36

5

5.2 Protocol .. 37

5.2.1 Construction Phase .. 37

5.2.2 Campaigning Phase .. 39

5.2.3 Voting Phase ... 41

5.2.4 Synchronisation Phase ... 44

Security Considerations .. 47

6.1 Selection of Worker and Producer Nodes .. 47

6.2 Production of a Ledger State Update ... 50

6.3 Signature Scheme ... 57

6.3.1 Rogue Key Attack .. 57

6.3.2 Quantum Attack ... 57

Conclusion .. 58

6

Glossary

Account (definition and types) – A digital account on Catalyst is a record of KAT tokens

held by an entity (individual(s) or device(s)). It is defined by a digital address, associated to a

public key, and a token balance. There are three types of accounts stored on Catalyst ledger:

nonconfidential accounts within which the account balance is readable to anyone, confidential

accounts within which the amount is obfuscated and held in the form of a commitment, and

smart contract-based accounts.

Blockchain – A blockchain is a peer-to-peer immutable decentralised ledger of information.

It can be considered a decentralised database. Transactions created on a blockchain are

bundled together into blocks, which are linked together using the hash of the previous block. It

provides an indefinitely traceable history of all transactions that have taken place on the

network.

Confidential Transaction – A transaction within which a number of KAT tokens transferred

are made invisible to all through the use of cryptographic commitment scheme. The validity of

the transaction can still be checked without revealing the actual number.

Consensus Mechanism – Consensus is a method of reaching agreement on a set of

proposed changes submitted by users during a period. This changes the state of the ledger to

reflect these agreed changes. Consensus on Catalyst uses a collaborative approach among nodes

to generate a correct update of the ledger state.

Distributed File System (DFS) – This is a storage mechanism, within which there is no

single point of storage, but rather relies on an entire network. Allows files to be stored in an

efficient and distributed manner. Catalyst DFS is used to store files as well as historical ledger

state updates. DFS is maintained by some nodes on the network.

Distributed Ledger Technology (DLT) – All blockchains are distributed ledgers, not all
distributed ledgers are blockchains. It can be considered a database where there must be no
central source of storage. Catalyst uses a ledger-based system where updates are made at each
ledger cycle. These updates are used to change the overall state of the ledger.

Eclipse Attack - An attack where almost all of peers connected to an honest node are

controlled by one malicious entity, thereby allowing the malicious entity to control the

information that is passed to that node.

KAT tokens – A medium of exchange used on Catalyst Network, enabling users to perform

actions on the ledger such as accessing services provided on the network or storing and

retrieving files.

Ledger Cycle – A fixed period after which the ledger state is updated using a consensus

drawn by the producers. It is comparable to the block time in traditional blockchain.

7

Ledger Partition - A ledger partition is a database storing accounts of a given type:

confidential, non-confidential or smart-contract based accounts.

Node – A node is a device connected to the other nodes (its peers) on a peer-to-peer
network. A node could be a physical device, like a single-board computer, or running in a virtual
machine or containers.

Pedersen Commitment - Cryptographic primitive that uses elliptic curves operations to

obfuscate a value or statement. The value is hidden to others, but it can be revealed.

Producers - The group of peers that have been selected to perform management work on

the ledger for a specific ledger cycle. These producers collect new tokens as reward for the work

they performed.

Range Proof – Range proofs are used to determine the validity of a hidden value. The range

proof allows the user to demonstrate unequivocally that the value being declared is within a

specified range, without revealing the actual value.

Smart Contract – Smart contracts are computer programs that define sets of rules and

requirements and are deployed on a blockchain or distributed ledger. Such program can be

triggered by transactions or messages generated by other codes, and/or once certain

requirements have been fulfilled.

Sybil Attack - A malicious entity spins up alternative identities all under their control.

Thereby giving them increase control over a network. Sybil attacks can also be used to perform

a 51% attack. It can also allow them the spam the network with messages.

Transaction – Defined as a message broadcast on the network that represents the transfer

of KAT tokens to and from a set of digital addresses. A transaction can be non-confidential

(amount being transferred is visible to all) or confidential (amount in an entry is obfuscated

using commitment schemes).

Worker – A peer registered for worker queue that has been granted a pass for a finite period

which entitles it to contribute to the ledger database management. This node can be selected at

random to become a producer for a ledger cycle.

Worker Pool - The group of nodes that have been granted a worker pass for a finite period.

These nodes have a chance of being randomly selected to perform management work for a

particular ledger cycle.

Worker Queue - A queue of all the nodes that have declared themselves ready and capable

of performing work for the ledger, yet have not been granted a worker pass. The worker pass

allows peers to move from the worker queue to the worker pool.

8

Introduction
This paper gives an overview of the database architecture of the distributed ledger and the

structure and different types of transactions supported on Catalyst Network. It presents the

consensus protocol behind Catalyst Network, a new consensus protocol based on the

collaborative work performed by the network nodes, which uses the computing resources

available across the network to efficiently and securely reach a consensus on the distributed

ledger state updates. This paper is organised as follows:

• Chapter 1 - Technical Specifications: this chapter describes the cryptographic libraries

and tools used in Catalyst code base, including the choice of elliptic curve, hashing

algorithm and the zero-knowledge proof protocols.

• Chapter 2 - Peer-to-peer Network: this chapter describes the process followed by nodes

joining the network and the process of peer identification. The different roles of nodes on

Catalyst are explained, as well as the process to register on the network in order to

perform work related to the network (and ledger database) management.

• Chapter 3 - Ledger Database Architecture: this chapter gives an overview of the ledger

database architecture as well as the different types of account stored on Catalyst. The

concepts of current ledger state (CLS) and Distributed File System (DFS) for storing

ledger state updates and files are introduced.

• Chapter 4 - Catalyst Transactions: this chapter introduces the different transaction

types supported on Catalyst and describes the transactions’ structure, including the

process followed by users to generate and validate transaction signatures.

• Chapter 5 - Catalyst Consensus Mechanism: this chapter presents the new consensus

mechanism implemented on Catalyst.

• Chapter 6 - Security Considerations: this chapter discusses security considerations

with regards to the signature scheme and the consensus-based protocol on Catalyst.

10

Chapter 1

Technical Specifications

This chapter gives an overview of the cryptographic libraries and tools used to generate, sign

and verify transactions as well as the consensus-based protocol on Catalyst ledger that permits

the update of the distributed ledger across its peer-to-peer network.

A distributed ledger can be described as a distributed database managed by a peer-to-peer

network of computers. Many forms of data, from simple text files to media files or bank

accounts can be stored on a database. In centralised network, a database is typically managed

by a central computer or server and some parts of the database are accessible to users. On the

contrary, decentralised database are replicated across the network, each computer holds a local

copy of the database. The database is no longer managed by a central authority but instead by

a plurality of computers (or nodes) on the network. The replication of the database across

multiple nodes removes the vulnerability of single point of failure found with centralised

databases. Users can exchange digital data stored on a database via exchange requests, referred

to as transactions. To generate an exchange of data, the transactions are signed by the owners

of the data being exchanged. Nodes on the network agree on the validity of the transactions

issued by users via a consensus-based protocol, thus authorising the transactions to take place

and the database to be updated accordingly across the network.

DLTs relies on the generation of cryptographically secure ledger updates (or blocks in

blockchain terms) in order to remove the need for a central authority. The ownership and

exchange of data is made possible via the use of asymmetric encryption where users hold public

/ private key pairs. The public key can be made visible to all users and is derived from the

private key solely known by the user. Public keys act as users’ pseudonyms on the network.

Knowledge of the private key is necessary to successfully sign a transaction. The digital

signature therefore proves ownership of the data being transferred to another user. While it is

impossible to derive the private key from a public key or digital signature (with classic

computers) it is easy to verify, given a public key, that a signature could only have been

generated by the user in possession of the associated private key.

Two common asymmetric encryption techniques are Rivest-Shamir-Adleman (RSA) and

Elliptic Curve (EC) cryptography. RSA’s hardness relies on the difficulty of integer factorisation

of large prime numbers. EC cryptography relies on the hardness of the discrete logarithm

problem. In DLTs, EC cryptography is chosen in preference to RSA due to the significantly

smaller key size for the same level of security. On Catalyst, EC-based private keys have a 256bit

size which provides a 128-bit security. An equivalent RSA-based key would have a 3072-bit size.

11

1.1 Choice of Elliptic Curve
On the Catalyst ledger, Elliptic Curve (EC) cryptography is used to sign messages and generate

proofs of knowledge of information amongst users without having to reveal any information.

Throughout this paper, EC points are used for the creation of public keys and Pedersen

Commitments (PC). EC cryptography techniques are also used to generate and verify the

signature of transaction encompassing the transfer of KAT tokens (see section 1.4) from or to

accounts locked by the private keys of Catalyst users. Finally, EC cryptography techniques are

used for the generation and verification of range proof that any number (i.e. an amount of

tokens) hidden in a PC can be provably shown to lie within a range of acceptable values.

There exist many types of EC, some of which are part of NIST curves [4]. While the NIST

curves, such as the secp256r1 curve, are advertised as being chosen verifiably at random, there

is little explanation for the seeds used to generate these. By contrast, the process used to pick

non-NIST curves, such as the twisted Edwards Curve25519 used in Monero project [5], is fully

documented and rigid enough that independent verifications can and have been done. This is

widely seen as a security advantage, since it prevents the generating party from maliciously

manipulating the curve parameters [6]. Moreover, EC such as Curve25519 are designed to

facilitate the production of high-performance constant-time implementations.

On the Catalyst ledger we opt for the twisted Edwards Curve25519 [7], that is a birational

equivalent of the Montgomery curve Curve25519. It is defined over the prime field Fp where p

= 2255 − 19, by the following equation:

The order of Curve25519 can be expressed as N = 2cl with c a positive integer and l a 253-bit

prime number. N is a 76-digit number equal to:

N = 23 · 7237005577332262213973186563042994240857116359379907606001950938285454250989

Elements in Fp are 255-bit integers and can thus be represented in 32 bytes with the most

significant bit set to 0. An EC point on the twisted Edwards Curve25519 would therefore be

represented with 64 bytes. But given point compression techniques described in [5], it is

possible to reduce an EC point to a 32-byte data where 255 bits represents the x coordinate of

the point, and the last bit indicates the y coordinate.

In general terms, an EC of the form y2 = x3 +ax+b is defined over a prime field Fp where p

determines the maximum values of x and y, the two coordinates of an elliptic curve point. The

elliptic curve has a cyclic group of n points. A EC generator, G for instance, is an EC point itself

generating a cyclic subgroup of order lG ≤ n. This subgroup is composed of the set of points:

{0G,1G,2G,...,(lG − 1)G} with 0G = lGG known as the point at infinity. This subgroup is defined by

the relation xG = (x mod lG)G. The order of the subgroup lG is a divisor of n. For instance, if n =

100, then lG can take a value in {2,5,10,25,50}. Note that n cannot be a prime number. If lG = n,

the subgroup of G includes all the points of the EC.

12

1.2 Choice of Hashing Algorithm
Hashing generally refers to algorithms used to obfuscate data by generating a summary of the

data, or hash, in such a way that the original data cannot be restored using the hash, i.e. a

hashing function is a one-way function. The hash can be used to prove knowledge or ownership

of the original data. A hashing function generates a pseudo-random string of fixed length from

a data of arbitrary length. The hashing algorithm is said to be collision-resistant when the

probability to generate the same hash from two different data is negligible. Furthermore, a

hashing algorithm has the property that two similar data will lead to very different hashes, that

is to say a collection of hashes does not allow an entity unaware of the original data to acquire

knowledge about the data.

The hashing algorithm used on Catalyst ledger is Blake2b-256 (or simply Blake2b) which

produces a 256-bits string and is known to be amongst the fastest hashing algorithms and

particularly suitable for mobile applications [8]. Throughout the document, the hashing

function is referenced by the symbol H.

1.3 Zero-Knowledge Proofs

Confidential transactions on blockchains were introduced by G. Maxwell [9] as new data

structures to enable the transfer of tokens between digital addresses in such a way that the

amount or number of tokens exchanged is hidden, offering more privacy to the users. The

amount is obfuscated by using Pedersen commitment (PC). A Pedersen commitment is of the

form C = vH + bG where G and H are two distinct generators of the EC, v is a number of tokens

hidden in C and b is the PC mask, sometimes referred to as a blinding factor. b and v are both

integers.

In this paper, a PC is used to obfuscate the amount of KAT tokens associated to an account

stored on the Catalyst ledger. The PC has the following form: Ci = viH +biG and obfuscates the

balance of the account in KAT tokens, represented by an integer vi ∈ ZK (where K is the maximum

number of tokens defined in Catalyst system). Said balance is hidden using a blinding factor

). The generators G and H are two different base points of the same subgroup of

EC points such that the discrete logarithm is preserved, i.e. the x value in the relation xG = H (or

xH = G) is unknown. As a result, the two EC points viH and biG are added to form a valid EC point,

e.g the Pedersen Commitment. Using compression techniques, an EC point on Curve25519

amounts to 32 bytes, leading to a Pedersen Commitment (PC) size of 32 bytes.

Given the cyclical property of an EC, a PC of the form C = vH + bG can be rewritten as: C = (v

mod lH)H + (b mod lG)G

Where lG is the order of the generator G (or number of points on the elliptic curve defined

over G) and lH is the order of generator H.

The use of PCs provides a cryptographically secure method to mask the number of tokens

exchanged in a transaction. A token transfer may be represented by two elements in a

13

transaction: one representing the account debited of tokens and one representing the account

crediting of tokens. Each element may comprise a PC to obfuscate the token transfer. The sum

of the PCs in a transaction can be used to prove that the sum of the amounts spent and received

in a transaction amount to 0 KAT tokens, i.e. the transaction does not create or destroy tokens.

Assuming a transaction with n PCs, the sum of these must verify: where

.

On the Catalyst ledger we take advantage of the cyclical nature of elliptic curve and allow for

the use of positive as well as negative numbers of tokens to be contained within a PC. In truth

these negative numbers are actually positive and very large numbers. For example a user

sending 5 KATs would create a commitment including a negative amount −5 as follows: C = (lH

− 5 mod lH)H + (b mod lG)G. The use of positive and negative numbers in digital transactions is

rather uncommon yet advantageous. Indeed, it offers an improved anonymity solution to users

as the nature of a transfer embedded in a commitment (whether it consists in spending or

receiving tokens) needs not be specified in a transaction. The group of commitments in a

transaction can simply be added together in order to verify no new tokens are created (or

tokens destroyed) in the transaction.

Since 0H = lHH, it is in practise be possible to generate a PC with a very large number of

tokens, with the malicious aim to create new tokens while producing a valid PC sum. In order

to circumvent this problem, we use range proofs. Range proofs enable a user to prove that an

amount lies within a specific range of values without revealing the amount. The range of values

chosen for a range proof is [0,K) where K represents an upper limit on the number of tokens (

Confidential transactions have a cumbersome feature with respect to non-confidential ones,

that is a clear increase of a transaction size as well as of the generation and verification times.

The range proof associated to a transaction PC is the primary cause for the transaction size

increase. This leads to a lack of scalability and a significant increase in transaction fees

compared to non-confidential transactions. The Bulletproof protocol is a zero-knowledge proof

protocol [10] proposing an improved inner product argument algorithm which results in a

greatly reduced size of the range proof associated to a PC. While traditional range proof sizes

are typically linear in the bit-length n of the range proof (where M = 2n), Bulletproof provides a

significant saving by creating range proofs where only [2 log2(n)+9] group and field elements

are required. Moreover, Bulletproof protocol allows to generate aggregated range proofs with a

size that grows logarithmically in the number of commitments, offering a faster batch

verification time. The range proof generated for confidential transactions on Catalyst ledger are

produced using the Bulletproof protocol.

1.4 Catalyst Tokens
The Catalyst native network token is named KAT (in reference to Katal, the unit of a catalyst

activity). A KAT provides the network with the functionality to pay for network services or

receive value for the provision of network services. It derives its intrinsic value from the

14

development and use of the network and hence provides utility for both work undertaken by

producer nodes and use of the network.

KAT is a utility token and as such aims at providing Catalyst network users with access to

services supported by decentralised applications (dApps) and Smart Contracts. The tokens are

not designed as an investment although the value of the tokens can vary according to the

demands for services on the network. These tokens are considered a medium of exchange as

these can be used to facilitate the sale, purchase or trade of services on the network. Such trades

take place via the use of transactions created by users and broadcast on the network.

The transfer of KAT tokens between user accounts are embedded in transactions. The

transactions are processed by producer nodes on the network (as discussed in section 2.1)

which are tasked with verifying said transactions and using these to produce a valid update to

the balance of these accounts stored on the distributed ledger. The ledger database needs to be

frequently and securely updated to account for these token transfers. A healthy network thus

relies on a robust mechanism to manage the ledger database in a decentralised manner. Catalyst

consensus-based protocol (described in section 5.2) is implemented to incentivise users on the

network to contribute to the ledger database management, offering them tokens as reward for

their work. This reward typically comprises two components: a) tokens paid by the users

issuing transactions and directly debited from their accounts, in the form of transaction fees; b)

new tokens injected (or released) into the system. The token supply model adopted for Catalyst

base currency (KAT tokens) is a dynamically adjusted inflation model: the number of tokens

injected into the system (annually) will be a fraction of the total amount of circulating tokens,

adjusted to ensure a healthy and growing network. The economic considerations defining the

token supply model of KAT tokens are beyond the scope of this document.

16

Chapter 2

Peer-to-Peer Catalyst Network
Peer-to-peer communication allows messages (including but not limited to transactions) to be

propagated across a network. Peer-to-peer networks rely upon information to be passed

between nodes in an efficient and orderly manner.

The protocol used to propagate messages needs to be such that the large majority of nodes

receive accurate messages in a timely manner. Catalyst implements a gossip protocol to

propagate messages amongst peers. Gossip protocols, also known as epidemic protocols, are

named as such because of how they spread information. Each node propagates a message to a

number of its connected peers, randomly chosen amongst nodes in the network. As nodes

receive the message, they propagate it to their peers. This allows the message to spread rapidly

with a high level of coverage.

Catalyst implements a peer identification protocol. Each node that joins the network must

have a unique peer identifier that describes the node’s identity. This allows users to track their

connected peers as well as associate a reputation to each node, to track badly performing nodes.

The peer identification and gossip protocols are thoroughly documented in a technical paper

currently under writing by the Catalyst engineer team. The following describes the different

roles and responsibilities assumed by nodes on Catalyst Network.

2.1 Peer Role Types
Peers on the Catalyst network can assume a variety of roles. These include:

• User node - The default state of all nodes on the network. The role of a user node is to

receive transactions, check the validity of transactions and when valid, forward these to

their peers. User nodes can also generate transactions and observe the network. However,

they are not entitled nor required to perform any other work on the network.

• Reservist node - A node that has signalled its intent to perform work for the network and

provided proofs of its available computing resource dedicated to the network.

• Worker node - A node that has been granted a worker pass for a finite period.

• Producer node - A worker node that has been selected to perform work for a particular

ledger cycle. A producer node will be rewarded for performing good quality work by

receiving KAT tokens.

17

Figure 2.1: Illustration of the different roles assumed by nodes on Catalyst Network.

• Storage node - A node able to sell some of its spare storage to allow other users to store

their data in a decentralised manner.

All nodes on the network will receive transactions, validate and forward these transactions

to other peers that they are connected to. This is to allow efficient propagation of transactions

across the network.

Reservist nodes, upon registering to perform work on the network, are placed at the back of

a node queue (or worker queue) from which they must wait to be given a worker pass. This pass

grants them the right to become a worker node and a member of the worker pool for a finite

period. During this period, several ledger cycles happen, and the worker node has a chance of

being randomly selected to become a producer node for any ledger cycle. The producer nodes

are the network peers that work together and follow a consensus-based protocol to build the

ledger state updates, as described in section 5.2.

2.2 Nodes Registration

2.2.1 Producer nodes selection

The selection of producers among the worker pool can be achieved for each ledger cycle using

a randomised approach. Since a producer generates a ledger state update for a ledger cycle

based on transactions collected during the previous ledger cycle(s), such assignment to a node

should be revealed at least one cycle ahead. In fact, we use a method that reveals at the

beginning of a ledger cycle Cn the list of nodes selected to be producers for a ledger cycle Cn+1

using information available one cycle ahead (Cn−1).

At the beginning of a ledger cycle Cn, at time t = tn,0, a pseudo-random number rn+1 is drawn

using the Merkel tree root of the ledger state update produced during the cycle Cn−1, as seed to

the pseudo-random number generator. The random number rn+1 is then used to define the list

of workers selected to become producers for the next cycle Cn+1 in the following way: for each

worker node identifier Idi the quantity ui = Idi ⊕ rn+1 is defined, where ⊕ is an XOR function (for

binary-based modulus addition). The list of new identifiers {ui}i=1,...,N (N is the total number of

nodes in the worker pool) is sorted in ascending order and the first P identifiers in that list are

the identifiers of the nodes selected to be producers for the next cycle Cn+1.

18

2.2.2 Worker nodes selection

In a large network, it can be anticipated that a large number of nodes have available resources

to be used to manage the ledger database and try to join the worker pool (which translates as

a high demand for work). The size of the worker pool must however be determined by security

as well as economic factors. Indeed, it must be profitable for a node to join the worker pool. Said

otherwise, the average number of tokens earned by a producer over a period should at the very

least cover its operational cost. As there might be more nodes willing to work than required for

the worker pool, nodes may join a secondary pool, called worker queue, and wait to be called to

join the worker pool. For these nodes to join the worker pool, there must be a mechanism that

limits the period during which a node can persist in the worker pool. The approach considered

is to grant nodes joining the worker pool a worker pass which is valid for a limited period.

The list of identifiers of nodes in the worker pool is maintained in a hash table, DHTw,

distributed across the network. Such table also stores the time of issuance of the node worker

pass. At the end of a ledger cycle, nodes in the network will be able to verify which worker passes

are no longer valid and have expired. Nodes on the network can update the table, freeing some

slots that can be occupied by the nodes sitting in the worker queue.

By providing proof of their available resource to the network [12][13], nodes can freely apply

to become workers. These nodes join the worker queue before joining the worker pool. Nodes

on the network store such proof alongside the node identifier in a secondary distributed hash

table, DHTq. As worker nodes leave the worker pool, some nodes listed in DHTq join the worker

pool. A logic described below can be implemented such that nodes with identifiers at the top of

the list of nodes in DHTq are the first ones to access the worker pool and be listed in DHTw. Such

an approach could however be seen as potentially accommodating Sybil-identity attacks [14],

nevertheless expensive, if an entity controls a large number nodes at the top of the worker

queue (at least equal to half the worker pool size N/2) and frequently adds many nodes to the

worker queue such that the size of the worker queue is large enough to create an impression of

a large demand for work. We therefore adapt our approach to define the dynamic of nodes

leaving the worker queue and joining the worker pool that both prevents Sybil attack and

incentivise nodes to join the worker queue during periods of low demand for work. We propose

a method to sort out the nodes listed in the worker queue.

A score (or ranking) is given to a node when it joins the worker queue. The nodes in the

worker queue are then ordered based on their score in descending order, i.e. the nodes with the

lowest score are at the top of the queue and are the first ones to leave the worker queue and be

selected to join the worker pool when some slots are freed in the worker pool. The method to

assign a score to a node joining the worker queue is not purely chronological based. It depends

on the volume of nodes trying to join the worker queue during an allotted time period ∆t.

Assuming St nodes apply to join the worker queue during a window of time [t,t+∆t]. The St nodes

first register to a temporary queue, represented by a third hash table DHTs. At the end of the

time window, a fixed and limited number of nodes listed in DHTs, z ≤ St, are randomly selected.

z is equal to the number of nodes who left the worker pool during the previous time window [t

− ∆t,t]. These z nodes are given a score drawn from a normal distribution centred around Rq,

which is a predetermined threshold of the worker queue length. This means that some selected

19

nodes may obtain a score lower than nodes currently at the bottom of the worker queue. The

rest of the nodes in the temporary queue (St − z) are given a score drawn from a normal

distribution centred around Rl = Rq + s, where s is a shift proportional to the volume of nodes in

DHTs. Figure 2.2 summarises the process of score allocation for nodes joining the worker queue.

20

Figure 2.2: Illustration of the process followed by Catalyst network to add nodes to the worker queue.

21

Chapter 3

Catalyst Distributed Ledger
The Catalyst database is designed to ensure Catalyst system can run on low resource devices

and fit the different needs of the network users without compromising on data integrity or

accessibility.

3.1 Ledger Database Architecture
Catalyst has a multi-level data architecture, as illustrated in Figure 3.1.

Figure 3.1: Illustration of Catalyst database architecture.

At the top level lies the current state of the ledger, i.e. the database containing the current

balance of digital accounts recorded on the ledger. It represents a snapshot of the ledger state,

at the present time. It is periodically updated. At the end of a ledger cycle, that lasts for a fixed

period between 30 seconds and 1 minute, a ledger state update is generated by a pool of nodes

selected to manage the ledger database, the producers, and distributed to the network users

who can then update their local copy of the ledger state. The process followed by producers to

generate a ledger update, i.e. the consensus-based protocol, is described in section 5.2.

The middle level comprises the recent ledger state updates, that is a set of the last recent

ledger state updates accepted by producers and broadcast across the network. Historical data,

or old ledger state updates, represent the bottom level. Both middle and bottom levels are

maintained by the Catalyst Distributed File System (DFS) module. The top and middle levels sit

on every node on the network and are thus immediately accessible. On the other hand, the

bottom level is maintained by some but not necessarily all nodes in the network. Long term

data is thus available with a short delay which constitutes a small trade-off for a compact ledger

database maintained by every node.

22

Figure 3.1 also shows the smart contracts and dApps stored on a database unit separate

from the account balances and communicate with DFS for the access, production and storage

of files. Technical specificities around smart contracts and dApps are discussed in a paper soon

to be released.

3.2 Accounts on Catalyst
Different types of accounts are stored on Catalyst ledger. Namely:

• Non-confidential user-based accounts, with a balance in KAT tokens that is updated via

the validation of non-confidential transactions. The account balance is visible to all.

• Confidential user-based accounts, with a balance in KAT tokens that is updated through

the validation of confidential transactions. The account balance is hidden, only known

to the account holder(s).

• Smart contract-based accounts. A smart contract-based account has an associated code

that can be triggered by transactions or messages generated by other codes.

An account comprises the following components:

• An address component: a 21-byte address Ai, which is derived from a public/private key

pair {Qi,ki} (where Qi = kiG, G is an EC generator) using a collision-resistant hash function

(H): Ai = H(Qi). The last 20 bytes of the hash are used to create the address. A 1-byte

prefix is added to distinguish between the different types of accounts, allowing users to

hold accounts of different types yet derived from the same public key.

• An amount component: when non-confidential, the amount is a 8-byte number vi ∈ ZK.

This represents the account Ai balance in KAT tokens (with K a threshold on the number

of tokens). When confidential, the amount component is a 32-byte Pedersen

Commitment [9] Ci = viH +biG that hides the balance vi of the account using a blinding

factor

• A data component: reserved to smart contract-based accounts and used to store data (or

a reference to data stored on DFS) that amounts to a maximum of 64 bytes.

As such, Catalyst ledger state is naturally split into partitions where each partition stores

accounts of a given type.

3.3 CLS Structure
The ledger state thus encompasses different partitions, each of which keeps the balance of

accounts of a specific type up to date. The current ledger state (CLS) lists the accounts balance

at the present time, allowing anyone to access (and comprehend in the case of non-confidential

accounts) the available balance in tokens of an account.

23

When users on the network wish to transfer tokens to other users, they issue transactions

that are broadcast to the network. The structure of these transactions is discussed in section

4.2. The transactions are collected by nodes assigned to the management of the ledger database

(as detailed in section 2.1) and used to generate a ledger state update. A ledger state update is

a cryptographically secure structured data object that allow users to update their local copy of

the ledger. The production of valid ledger state updates in a trust-less environment is discussed

in section 5.2.

The ledger state update consists of a summary of the token transfers embedded in the

transactions broadcast by the network users. Transactions broadcast during a ledger cycle are

collected by nodes who then use these to generate a ledger state update during the next ledger

cycle. In layman’s terms, the ledger state update can be viewed as a structured database with a

series of row, each row having two components: a public key referring to the address of an

account stored on the ledger and an amount (positive or negative) that represents a token

transfer.

Let’s assume for instance that Alice wants to transfer 5 KAT tokens to Bob. The transfer form

Alice’s account to Bob’s account would be represented by a transaction with two entries. The

ledger state update including this transaction would comprise two rows: one row with Alice’s

account address (or the public key used to derive the account address) and a negative amount

−5 KAT and one row with Bob’s address and a positive amount 5 KAT (transaction fees,

discussed in section 4.2, are ignored here). Once a user receives a valid ledger state update, the

former can use the latter to update their local copy of the ledger: Alice account is debited of 5

tokens while Bob’s account is credited of 5 tokens. Note that the ledger state update produced

for one ledger cycle only includes balance changes of accounts called in the transactions

broadcast on the network during the precedent ledger cycle. This allows for a compact ledger

state update as there may be many more accounts stored on the ledger that are not used during

a ledger cycle.

Transactions in the context of DLT refer to data objects created and cryptographically signed

by users and propagated as messages on the peer-to-peer network. A transaction a la Bitcoin

typically includes:

• a set of inputs where each input comprises the details of the account or digital address

being debited, the (positive) amount associated to that address and the signature of the

account owner, proving the legitimacy or ownership of the tokens as well as the valid

balance of the debited account.

• a set of outputs where each output comprises the details of the account being credited.

Rather than a signature, a locking program is attached to the output, that effectively locks

the tokens sent to this output using the public key of the recipient (the user holding the

account being credited).

24

A digital signature associated to a transaction input is a mathematical scheme that allows

the owner of the associated private key to prove that they have authorised the spending of the

funds locked in the output of a transaction stored on the ledger. A valid signature further

guarantees the non-repudiation of the message (the sender cannot deny having sent the

message) and the message integrity (the latter has not and cannot be tampered with).

On the Bitcoin blockchain, valid blocks of transactions get appended to the blockchain in

such a way that any new block is cryptographically sealed and linked to the last block appended

to the blockchain. A block contains a set of transactions that transfer digital assets from a set of

digital addresses to another set, as well as an extra transaction, called a coinbase transaction,

that rewards the miner who successfully produced that block with new digital coins. Each

transaction input contained in a valid block (except the coinbase transaction) refers to the

output of a transaction stored on a previous block (a.k.a an unspent transaction output – UTXO).

It can be viewed as the second state of that output. First, the output is unspent, locked and

stored on a valid block. Secondly, the output is used as input in a new transaction and unlocked

by the owner of the unlocking key. Eventually, an old block in the blockchain will solely contain

spent transaction outputs usable as inputs in transactions stored in later blocks. As such the old

block becomes obsolete as it no longer holds any spendable tokens.

The Catalyst ledger operates differently in the sense that it does not store UTXOs. The ledger

state comprises digital accounts of which the balance changes over time as transactions

debiting or crediting these accounts are validated on Catalyst network. As detailed in sections

4.2 and 5.2, the removal of UTXOs is made possible via the combination of a novel consensus-

based protocol and a new transaction structure such that any token transfer embedded in a

transaction (whether spending or receiving tokens) is signed and thus authorised by the

relevant parties involved in said transfer. User nodes need not access old ledger state updates

to be able to transfer tokens from their account stored on Catalyst ledger. They only need a local

copy of the current ledger state.

Once a ledger state update is generated by a pool of producer nodes, it is stored on DFS and

can be accessed by any node to update their local copy of the current ledger state. DFS is built

upon the IPFS protocol [15] and is used to store files as well as historical ledger state updates.

This removes the burden on user nodes to maintain the full history of the ledger database while

allowing for fast retrieval of files as well as old ledger state updates. DFS is maintained by all

nodes on the network. However, DFS is made of a multitude of compartments and each node

needn’t hold all compartments. The design of a ledger compartment dedicated to the storage of

files and historical ledger state updates is an approach taken to prevent the bloating of the

ledger and allow the network to support services at scale. Indeed, this approach allows Catalyst

ledger to remain both lean and cryptographically secure.

25

26

Chapter 4

Catalyst Transactions
Transactions are the integral element to any blockchain or DLT. These are messages broadcast

by users on the network that encompass the transfer of tokens and data to and from digital

accounts stored on the ledger. Catalyst network strives to offer users a variety of services

accessible on the network and as such supports a plurality of transaction types. This includes

the choice of opting for hidden or visible accounts via the support of both non-confidential and

confidential transactions, thus offering different levels of anonymity to the network users. This

section describes how different transaction structures and account types are supported on

Catalyst and details the processes behind the generation and verification of transaction

signatures.

4.1 Transaction Types
On the Catalyst ledger, a transaction is a message or data object used to transfer KAT tokens or

data from and to a set of digital accounts. Such a transaction can include different types of

transfer depending on the nature of the accounts embedded in said transaction. As mentioned

in section 3.2, Catalyst supports the transfer of confidential and non-confidential assets.

Catalyst also supports the transfer of assets and data linked to smart contracts and data storage.

These different types of transfer are defined by specific transaction components and a

transaction type allow any node on the network to differentiate between the nature of

exchanges embedded in different transactions. In this section we give an overview of the

transaction structure and the different components considered for each type of token and data

exchange.

4.2 Transaction Structure
In traditional blockchains (such as Bitcoin) a transaction is composed of a set of inputs and

outputs. An input refers to the output of a transaction stored on a valid block of the blockchain,

effectively spending that output (also referred as UTXO). In broad terms, an input thus spends

tokens, while an output receives some. The output is locked and can later be spent in an input

of a future transaction. On the Catalyst ledger, we opt for a new terminology, defining as

transaction entry a transaction component that spends or receives tokens. A transaction object

on Catalyst is made of the following components:

• A transaction type specifying the type of exchange embedded in the transaction entries

(non-confidential or confidential asset transfer, data storage request and retrieve, smart

contracts-related token and/or data transfer).

• A set of n transaction entries {Ei}i=1,..,n. Transaction entries are specific to the nature of the

token and data exchange. These are described in 4.3.

27

• An aggregated signature T proving ownership of the set of accounts called in the

transaction entries.

• A locking time corresponding to a point in time after which the transaction can be

processed by a worker pool.

• The transaction fees paid by the transaction participants.

• A timestamp corresponding to the point in time where the transaction is complete and

ready to be broadcast on the network.

• A data field that can contain up to 60 bytes of data transferred in data storage or smart

contract-related transactions.

Any valid transaction must contain a type, a timestamp and locking time (when the latter is

set to 0 there is no waiting period prior to processing a token exchange embedded in the

transaction), a list of transaction entries and an associated signature. Any other field can be

included to the transaction, depending on the nature of the token exchange.

4.3 Transaction Entries
Transaction entries are used on the Catalyst ledger to represent the transfer of tokens into or

out of the account referenced in the entries. This generally takes the form of debit or credit of

an account. We use the term entry to replace the traditional input and output, as on Catalyst

there is no differentiation as to how the debit or credit of an account is formed. Whether

spending or receiving tokens, a user must sign their transaction entry and a transaction is

complete if and only if all transaction entries have been signed.

A transaction entry typically consists of two components:

• A public key, from which the address of an account stored on the ledger is derived.

• An amount component that can be a number (when the transaction is non-confidential)

or a Pedersen commitment (when the transaction is confidential) and represents the

number of tokens spent from or transferred to the address associated with the public key.

On Catalyst, the amount or number of tokens included in a transaction entry can be positive

(when receiving) or negative (when spending). This choice allows for a) keeping a simple

transaction entry structure (there is no need for an extra field to specify the type of transfer

embedded in an entry) and b), in the case of confidential asset transfer, an improved anonymity

as an observer will be unable to differentiate between a sender and a recipient in a token

transfer.

The public key Qi in a transaction entry Ei is always a 32-byte element from which one address

Ai stored on the ledger can be derived.

The amount component of an entry however differs depending on the nature of the token

exchange:

28

• For a non-confidential asset transfer, it is a 8-byte (positive or negative) number vit that

represents the number of tokens spent from or transferred to the address Ai,

communicated in clear text.

• For a confidential asset transfer, it is made of two elements:

– A 32-byte Pedersen commitment Cit that represents the commitment of tokens spent

from or transferred to the address Ai

– A range proof Πi(Ci0) (as discussed in section 1.3) that proves that the token balance

of Ai remains within an acceptable range of value (typically greater than 0 and

smaller than a threshold M of number of tokens) after the transaction has taken

place.

The construction of these elements is discussed below.

The balance vi of the account Ai is initially represented on the ledger by the PC:

 Ci = (vi mod lH)H + (bi mod lG)G (4.1) Where bi is a blinding factor chosen by the

account holder. Let’s assume that the latter wishes to exchange a number ai of tokens. To

obfuscate the number of tokens transferred in a transaction entry Ei, the account holder creates

a PC:

 (4.2)

Where vit = ai if receiving the tokens (ai > 0) and vit = lH + ai if spending the tokens (ai < 0). lH

is the order of the subgroup of EC points generated by H and is much greater than K, the

maximum number of KAT tokens defined in Catalyst system. As a result, it would not be possible

to construct a valid range proof for vit when ai < 0. The account holder can however create a

second PC as follows:

 (4.3)

Which represents the commitment of the account balance after the transaction has taken place:

If ai < 0, vi0H = [vi + (lH + ai)mod lH]H = [vi + ai]H. It is only possible to generate a valid range

proof associated to Ci0 if vi > ai. Note that vi is necessarily smaller than M as the balance of the

account would have been determined by a previous transaction entry, itself including a range

proof ensuring that vi ∈ [0,K). As discussed in section 1.3, a range proof generated using the

bulletproof protocol amounts to 672 Bytes.

Table 4.1 summarises the different components of a transaction and their respective size for

the two types of transfer aforementioned.

29

Each entry in a transaction needs to be signed to authorise the transfer of tokens from or to

the address included in said entry. This can be achieved through the use of an aggregated

signature scheme as described in section 4.4.

Another type of transaction entry is considered on Catalyst, that is a stand-alone entry. It is

not included in a transaction but is added to the ledger state update generated by the producers

during the ledger cycle and includes the reward allocated to a specific producer for its

Transaction message Size

Transaction Type (account type & asset class) 1 Byte

Entries (n > 1) non-confidential entry 32-byte public key
n · 40 Bytes

8-byte amount

or confidential entry 32-byte public key n · 736 Bytes

32-byte PC

672-byte range proof

Transaction fees 8 Bytes

Locking Time 4 Bytes

Aggregated Signature 64 Bytes

Timestamp 4 Bytes
Table 4.1: Structure of confidential and non-confidential transactions on Catalyst and size per transaction component.

contribution in producing a valid update of the ledger state. Such entry, called ledger

compensation entry (or simply compensation entry), is very similar to a non-confidential entry.

It includes an 8-byte amount, that is however always positive, and a 32-byte public key from

which the address of an account stored on the ledger is derived. However, unlike transaction

entry, a compensation entry need not be signed to authorise the transfer of tokens to the

account address specified in said entry.

4.4 Transaction Signature
On the Catalyst ledger, all the transaction entries are signed to authorise the transfer of tokens

which means that all the participants in the transaction need to sign their respective entry for

a transaction to be considered complete and ready to be broadcast on the network. When

signing an entry Ei a participant needs to prove ownership of the account Ai referred in the entry.

Said otherwise, the user needs to prove knowledge of the private key ki paired to the public key

Qi from which the account address Ai is derived. A verifier can then verify the validity of the

signature given the public key Qi specified in an entry Ei.

Signatures for transactions on the Catalyst network are formed in a highly similar way

regardless of whether the asset transfer embedded in said transaction is confidential or

30

nonconfidential. The signature scheme describes in this section therefore applies to both

transaction types unless explicitly stated.

In blockchains such as Bitcoin and Ethereum, transaction inputs are signed using ECDSA

scheme, where the public key is recovered from the signature and used to retrieve the account

or UTXO address, thus ensuring that the rightful owner of the tokens is authorised to spend

these. The use of a second temporary, often called ephemeral, public/private key pair in the

signature adds a layer of protection against malicious attempt to retrieve the private key of a

user when signing multiple transactions spending tokens from the same address.

Public key recovery is however incompatible with batch validation, i.e. it is not possible to

recover a set of public keys from an aggregated signature on multiple transaction inputs. As a

result, the choice of ECDSA-based scheme for Catalyst transactions would not be optimal as a

transaction should contain a minimum of two entries. A Schnorr-based signature scheme is

preferred to enable user to jointly produce a signature using their private keys. A solution

recently proposed by Y. Seurin et al [16] also accounts for protection against key-rogue attacks,

preventing key malleability to create validate signatures on transaction without knowing the

users’ private key. We propose a Schnorr-based signature scheme inspired from this recently

published work.

We define the transaction core message m as a set of n entries {Ei}i=1,..,n and additional

information X mentioned in the previous section (see table 4.1), excluding the transaction

timestamp and signature:

m = {Ei}i=1,..,n + X

The participant Ui responsible for Ei (holder of the account Ai) creates the following

challenge:

 ei = H(m || Q˜)H(L || Qi) (4.4)

Where:

• H is a hashing function

• m is the transaction core message • || denotes the concatenation between strings • Q˜ is

the aggregated public key such that:

Q˜ = H(L || Q1) · Q1 + .. + H(L || Qn) · Qn

• L is the hash of all the public keys used in the transaction expressed as L = H(Q1 || .. || Qn)

Ui then creates the following partial signature:

 si = ri + ei · ki (4.5)

Where ri is a pseudo-random number chosen by Ui and kept secret.

31

For non-confidential transaction, the partial signature (si, Ri) with Ri = riG, generated by Ui,

is forwarded to the other transaction participants. Each participant in the transaction Uk (k 6=

i) can compute:

 Ri0 = si · G − ei · Qi (4.6)

where Qi = ki · G and verify that Ri0 = Ri, proving the validity of the partial signature.

The last participant to receive the full set of partial signatures builds the transaction

signature. The transaction signature of a non-confidential transaction is composed of the pair:

T =(s 1 + .. + s n ,R 1 + .. + R n | {s z } | {R z }) (4.7)

At the verification phase, a producer can check that the total signature is as follows:

1. Compute the quantity R0 = s · G − H(m || Q˜) · Q˜ 1

2. Verify that R0 = R

If so, the signature T = (s,R) is valid. The signature is composed of a 32-byte integer and a

32-byte EC point, leading to a compact 64-byte signature for the entire transaction, regardless

of the number of transaction entries.

.
Recall that each entry Ei in a confidential transaction includes a PC obfuscating the amount

vit defined by: Cit = vitH + btiG. For confidential transaction, Ui generates a partial signature

using the blinding factor in their PC: . Using generates the partial

signature (si, Ri) and forwards it to the other transaction participants. Each participant in the

transaction Uk (k 6= i) can compute:

 (4.8)

The last participant to receive the full set of partial signatures builds the transaction

signature. The transaction signature of a confidential transaction is then composed of the pair:

T =(s 1 + .. + s n ,R 1 + .. + R n

 | {s z } | {R z }) (4.9)

The verifier can compute:

If R0 = s · G − H(m || Q˜) · Q˜ , the signature T = (s,R) is valid. The validity of T proves a verifier

that the sum of the commitments in the transaction entries results in a commitment to 0 after

adding the transaction fees paid by the different participant, thus ensuring that no tokens are

created or lost in the transaction.

Once the transaction aggregated signature is valid, the participant in possession of all partial

signatures can append it to the transaction. The transaction timestamp is defined as the time

1
 Indeed,

32

when the transaction is completed by said participant and ready for broadcast across the

network.

4.5 Transaction Validity
Nodes in the network receive and forward transactions to their peers. In order to prevent

spamming attack over the network, nodes only forward transactions that are considered valid

against a validity check list. Before forwarding it to its peers, a node verifies the transaction

against the following list of criteria:

• The transaction syntax (aforementioned in 4.2) and data structure must be correct.

• The transaction size in bytes is greater than or equal to 160 Bytes (defined by the

parameter MIN STD SIZE for non-confidential transaction) or 800 Bytes (defined by the

parameter MIN CON SIZE for confidential transaction).

• The transaction size in bytes is less than 1 Mbyte (defined by the parameter MAX STD

SIZE or MAX CON SIZE depending on the transaction type).

• The transaction list of entries must have at least two elements, each element must have a

correct syntax.

For non-confidential transaction Ei must have a total size of 40-byte and 2 components:

– A public key Qi with a corresponding account address Ai stored on the ledger where

the account have a visible balance (8-byte field).

– An amount vit that once added to the balance vi of the account mapped with the public

key leaves the account balance positive (vi + vit > 0)

For confidential transaction Ei must have a total size of 736 bytes and 3 components:

– A public key Qi with a corresponding account address Ai stored on the ledger where

the account has a hidden balance (32-byte field).

– A 32-byte PC Cit

– A 672-byte range proof must validate against a new PC built out of the sum of Cit and

the account balance Ci.

• The transaction fee amount vf is greater than a (positive) minimum fee values MIN TX FEE

• The relation = 0 must be verified for non-confidential transaction.

• The transaction signature must validate against the public key built out of the public keys

stored in the transaction entries.

The verification of the range proofs in the transaction is costly in computer resources and is

therefore only performed by the producers.

34

Chapter 5

Catalyst Consensus Mechanism
Proof-of-Work (PoW) and derivate algorithms are commonly used to manage blockchain and

distributed ledger in a distributed manner. Consensus-based protocols based on such

algorithms rely on a plurality of nodes, called miners, competing to generate at regular interval

of time a valid block of transactions to append to the blockchain. Part of the competition

consists in solving a cryptographic puzzle that ensures the validity of the content of a block.

However, this competition amongst nodes wastes a tremendous amount of energy as all

miner nodes expend computational power to solve the same problem, yet only the work

performed by one node is used to update the blockchain. The energy consumption per year for

Ethereum and Bitcoin combined is 66.6 TWh per year which is comparable to yearly energy

consumption of Switzerland (61.6 TWh per year) [17]1. It is clear that this is not sustainable or

environmentally friendly. Moreover, as the difficulty associated with the cryptographic puzzle

increases over time, miners are forced to invest in more computer resources to have a chance

of earning miner rewards. Such consensus protocols have a clear negative environmental

impact and indicate counteractive economic implications with high risk of mining

centralisation.

This chapter presents a new consensus-based protocol that can be applied to a peer-to-peer

network in order to manage a distributed ledger in a fair and secure manner without wasting

unnecessary amount of energy.

5.1 Background

5.1.1 Motivation

The consensus algorithm designed by the engineers and researchers at Catalyst rests on the

principle that every node participating in the network can contribute to the ledger state update

and should be rewarded accordingly. Indeed, the consensus mechanism was conceived based

on the observations that:

• In reality, not every node needs to validate every transaction for a network to be secure

and a ledger fully decentralised.

• Collectively across a network of nodes there is significant distributed computer

resources to securely maintain a ledger. Network performance should as a result improve as

the network scales up.

1 This energy consumption allows approximately 445 million transactions for Bitcoin and Ethereum combined

per year [18][19], compared to Switzerland where 820 million debit card transactions are processed per year [20]

for an estimated energy consumption of 0.001358 TWh.

35

The PoW algorithm was introduced to solve the General Byzantine Problem among

participants in the peer-to-peer network, allowing them to reach consensus without trusting

one another [21]. In the PoW algorithm or any derivatives, mining nodes collect and validate all

transactions broadcast to the network and form a block with these new transactions. The

miners compete to solve a computationally hard problem, the solution of which is used to prove

that a block is valid and can therefore be appended to the blockchain. The level of difficulty

attached to the cryptographic problem solved by the miners is set by the network to ensure that

blocks are produced on a regular time interval (roughly 10 minutes in the case of Bitcoin, and

approximatively 17s for Ethereum). Under this scenario, one mining node is rewarded for

producing the correct next block of the blockchain (which in the analogy of Catalyst

corresponds to the last valid ledger state update). Although the solution to the cryptographic

puzzle is hard to find, it is very easy to verify which allow for a fast and secure update of the

blockchain.

While this approach provides a secure way to maintain a distributed ledger, it leads to a

tremendous amount of wasted computational and electrical energy with high risk of mining

centralisation. In the example of Bitcoin, the early blocks were mined by individuals with

modest computer resource.

 Figure 5.1: Distribution of the Bitcoin hash rate power over a 24h period, as the 30 of October 2018[22]

As illustrated in Figure 5.1, the situation is rather different nowadays. Few miners work

independently (represented as the “unknown” 11.9%) while the remaining join mining pools

such as Slush Pool (which was the first mining pool created for Bitcoin mining) to share their

computer resources and the collected rewards, usually against the payment of a fee (2% of the

mining reward with Slush Pool). Some mining pools are private pool, such as BTC.top. It also

worth noting that around 80% of the mining pools are located in China [23] where the

electricity is considerably cheaper than in other parts of the world.

A popular alternative to the PoW algorithm currently considered by several blockchain

projects is the Proof-of-Stake algorithm (PoS). This approach addresses the footprint concerns

from the former by assigning the task of producing the next valid bock to a subset of miners.

The miner nodes can be selected randomly or based on criteria such as the miner’s wealth

(stake). The main concern with a PoS-based consensus mechanism remains the risk for

36

centralisation of wealth and subsequently the network management, with the mining work

inevitably distributed to a few wealthy nodes [24].

Catalyst consensus mechanism is not based on a competitive process. Instead, the nodes in

the network collaborate to collectively build the correct update of the ledger state. The

algorithm used by nodes to produce a valid ledger state update does not require the execution

of computationally expensive tasks, allowing nodes with limited resources to contribute. At the

end of a ledger cycle, new tokens are injected into the system and all the nodes that contributed

to producing the correct ledger state update receive a share of that reward.

5.1.2 Naming Convention

Nodes who contribute to maintaining the ledger state are called producers, rather than miners.

Indeed, producers do not solve a computationally hard problem, but instead validate the

transactions broadcast to the network and use these to collaboratively build (produce) a ledger

state update.

In the following sections we assume that the ledger is composed of one single partition

comprising a fixed set of accounts. We therefore consider one single worker pool and one subset

of producer nodes selected per ledger cycle.

A ledger cycle Cn starts at time t = tn,0 and lasts for a period ∆tcycle, therefore ending at t = tn,0

+∆tcycle. A set of P producers {Pj}j∈P are selected to build the ledger state update during the ledger

cycle Cn. Each producer Pj can be identified by its peers as well as the rest of the network via its

unique identifier Idj (see chapter 2).

During Cn, the P producers collaborate to create a ledger state update ∆Ln based on the set

of mn−1 transactions broadcast on the network during the previous ledger cycle Cn−1. To limit

discrepancies in the set of transactions collected by the different producers and processed

during Cn a small-time window ∆tfreeze is considered. The mn−1 transactions {Txj}j=1,..,mn−1 are

actually collected during the period of time [tn−1,0 − ∆tfreeze,tn,0] (tn−1,0 = tn,0 − ∆tcycle) and must have

a timestamp comprised between tn−1,0 − ∆tfreeze and tn,0 − ∆tfreeze.

Each producer compiles a ledger state update and interacts with its peers to vote on the

most popular ledger state update produced by the set of producers. Each producer is thus

tasked with two responsibilities: compiling a local ledger state update and voting on the correct

(most popular) ledger state update. Each task entitles the producer to receive part of the reward

allocated to producers for maintaining the ledger state. The amount of reward individually

collected depends on the quality of work performed by a producer. During a ledger cycle Cn, two

lists of producer identifiers are created, Ln(prod) and Ln(vote). The first one lists the identifiers

of producers who correctly built the ledger state update while the second one lists the

identifiers of producers who correctly voted on the correct ledger state update built by the

producers included in the first list.

The process followed by producer nodes during a ledger cycle is described in phases. The

first three phases consist in producing the correct ledger state update before its broadcast to

the entire network. During each phase, a producer Pi generates a quantity αi and broadcasts it

37

to the network, while collecting the αj quantities generated by the producers {Pj}j∈P/i. The final

phase ensures the ledger state is updated across the network.

Throughout the different phases of the ledger cycle, the producers exchange quantities that

are hashes, notably of ledger state updates, (using the Blake2b hashing function) to which they

append their identifiers. The exchange of hashes allows for fast and efficient communication

rounds amongst the peers as these are smaller pieces of data than the actual ledger state

updates.

5.2 Protocol
Section 2.2 describes how user nodes register to become worker nodes and can be selected

from the worker pool to become a producer for a ledger cycle. This section describes the work

performed by producer nodes in order to maintain the ledger state. The work performed by

producers in order to generate an approved ledger state update ∆Ln for the ledger cycle Cn starts

at t = tn,0 and last for a period of time ∆tcycle. At the end of the ledger cycle, nodes in the network

use ∆Ln to update their local copy of the ledger state. This section describes the different phases

of a ledger cycle.

5.2.1 Construction Phase

During the first phase (a.k.a construction phase) of the ledger cycle Cn, a producer Pj ∀j ∈ P

creates a local partial ledger state update and exchanges it with its peers.

The first phase starts at t = tp = tn,0 and lasts for a period ∆tp, therefore ending at tp + ∆tp.

Local partial ledger state update generation and broadcast

At t = tp, the producer Pj flushes its mempool from the mn−1 transactions {Txi}i=1,..,mn−1 collected

during the period of time [tn−1,0 −∆tfreeze,tn,0] and uses these transactions to create a local partial

ledger state update ∆Ln,j. The production of ∆Ln,j lasts for a period of time [tp,tp +∆tp0] (∆tc0 < ∆tp).

The producer uses a salt σ, defined using a pseudo-random number generator that takes for

seed the hash of the previous valid ledger state update ∆Ln−1. The producer also creates a new

hash tree dn, to store the aggregated signature embedded in each of the mn−1 transactions. Pj

then follows a series of steps:

1. For each transaction Txi ∀i ∈ [1,mn−1], Pj verifies that the transaction is valid (see section

4.5) and if so, extracts the ni transaction entries (described in section 4.3)

{Eα}α=1,...,ni, included in Txi. The producer also extracts the transaction signature and adds

it to the hash tree dn. Note that the transactions signature in dn are sorted in alphanumeric

order, as to ensure that two same sets of transaction signature result in the same hash

tree.

2. For each transaction entry Eα, Pj creates a corresponding hash variable:

Oα = H[Eα || σ]

38

Each pair (Eα,Oα) is added to a list LsE. Steps (1) and (2) are repeated until all transactions

have been processed.

3. Pj then creates a new list LfE using the transaction entries listed in LsE

(assuming all transactions are valid) such that the transaction entries in LfE = {Eβ}β=1,...,M

are sorted following a lexicographical order based on their associated hash variable: O1 <

O2 < ... < Oβ < ... < OM. This approach blurs the links between the token flows embedded in

the transactions for a better anonymity of the users involved in said transactions.

4. Pj also extracts the transaction fees vif paid in each transaction Txi and creates the

following sum:

5. Pj computes a local partial ledger state update as the transaction’s entries list

concatenated with the hash tree of the transactions signature dn:

∆Ln,j = LfE || dn

The producer then computes a quantity (or producer quantity) hj as follows:

hj ∆j || Id j (5.1)

where h∆j is the hash value of the partial candidate ledger state update compiled by Pj

(also referred as the producer first hash value):

h∆j = H(∆Ln,j)

hj includes the producer unique identifier Idj (described in chapter 2), used to verify that

Pj is a producer node selected for the ledger cycle and later evaluate the quality of work

performed by Pj.

= h

39

Figure 5.2: Flowchart illustrated the steps followed by a producer Pj node during a period of time ∆tp leading to
the broadcast of the producer quantity hj.

6. At t ≤ tp + ∆tp0, Pj broadcasts hj to the other producers in the network. Figure 5.2 describes

the process followed by Pj to produce and broadcast hj.

Partial ledger state update collection

During the first ledger cycle phase, Pj collects other {hk}k∈P/j producer quantities generated by

its producer peers {Pk}k∈P/j in its cache.

At the end of the construction phase (t = tp + ∆tp), Cj first hash values are stored in Pj’s cache

(including the first hash value producer by Pj). Given the set of P producers selected for the

ledger cycle Cn, the producer Pj collects at most P − 1 producer quantities (e.g Cj = P) with each

quantity made of a first hash value and a unique identifier. In an ideal world, two producers Pj

and Pk would use the same set of transactions and as a result compute the same partial ledger

state update, leading to ∆Ln,j = ∆Ln,k. In practice, a producer may not collect exactly P first hash

values during ∆tp (e.g Cj ≤ P) and may not process the exact same set of transactions as its peers.

The following steps describe how each producer can verify that a partial ledger state update

has been generated by a majority of producers and generate the reward allocated to that

majority of producers.

5.2.2 Campaigning Phase

During the second phase (a.k.a campaigning phase) of a ledger cycle, a producer Pj designates

a candidate for the most popular partial ledger state update. At the end of the process,

producers forward their proposed candidate to their peers.

The second phase starts at t = tc where tc = tp + ∆tp and lasts for a period ∆tc, therefore ending

at tc + ∆tc.

40

Local candidate generation and broadcast

Using the Cj first hash values stored in its cache, Pj follows a series of steps during a period of

time ∆tc0 (∆tc0 < ∆tc):

1. Pj verifies that the same first hash value is embedded in a majority Cmaj of producer

quantities, where and Cmaj = count[(h∆k =

 . The threshold, Cthreshold, to decide if a majority of producers agrees

on the same partial ledger state update, should be strictly greater than 50%, due to statistical

considerations. The relevant variables for a producer to decide if the same partial ledger state

update is found by a majority of producers are Cmin and Cmaj. Threshold considerations are

discussed in detail in section 6.2.

If Cj > Cmin and Cmaj > Cthreshold :

• Pj creates a list Lj(prod) and appends to said list the identifiers of any producer Pk

who forwarded a producer quantity hk satisfying .

If also appends its identifier to the list Lj(prod).

• The producer Pj then computes a producer candidate cj as follows:

c (5.2)

Where # represents a hash tree or some other compressed data structure of the list

Lj(prod). cj corresponds to Pj’s candidate for the most popular partial ledger state

update. A hash tree of a list is useful to quickly verify that an object (an identifier) is

included in the list. #(Lj(prod)) is a witness of the list of producers who correctly

generated the most popular partial ledger state update according to Pj.

• At t ≤ tc + ∆tc0, Pj broadcasts its producer candidate cj to the other producers in the

network. Figure 5.3 displays a flowchart describing the steps followed by Pj to create

and broadcast cj.

j = h maj∆ j || #(

L j

(prod)) || Id

j

41

Figure 5.3: Flowchart illustrating the series of steps followed by a producer Pj to issue a producer candidate cj.

Candidate collection

Shortly after the second phase starts (at t ≈ tc), Pj starts collecting the producer candidates ck

generated by other producers {Pk}k∈P/j in its cache. The collection lasts for a period of time ∆tc

after which the producer holds Vj producer candidates in its cache (Vmin ≤ Vj ≤ P).

5.2.3 Voting Phase

During the third phase (a.k.a voting phase) of a ledger cycle, a producer Pj elects a partial ledger

state update from the collection of producer candidates that it has received. At the end of the

process, producers forward their vote which comprises a complete ledger state update

including a reward to some producers.

The third phase starts at t = tv where tv = tp + ∆tp + ∆tc and lasts for a period ∆tv, therefore

ending at tv + ∆tv.

Ballot generation and broadcast At t = tv:

1. Pj verifies that the same first hash value hmaj is embedded in a majority of producer

candidates. With] and

hmaj) ∀ k ∈ {Vj}], this condition is met if V maj > Vthreshold (See section 6.2 for more

explanations).

2. The producer Pj can only participate in the following steps if the local first hash value

computed during the construction phase, h∆j, is equal to hmaj. Indeed, Pj needs to have

42

knowledge of the partial ledger state update of which the hash was used to vote in order

to proceed.

If each producer collects the first hash value generated by every producer, any two

producers Pj and Pk would build the same list of identifiers Lj(prod) = Lk(prod). In practice, a

producer may not have collected all P first hash values and as a result may have an incomplete

list of identifiers, yet have collected enough data to be able to confidently issue a vote on the

most popular partial ledger state update. We mentioned how the identifier of a producer can

be appended to a first hash value to a) verify if Pj is a producer node selected for the ledger cycle

and b) evaluate the quality of work performed by Pj. Indeed, Idj can be used to create and add a

compensation entry to the ledger state update, that rewards the producer for its work

performed during the ledger cycle. The correct (complete) list of producers who successfully

built the correct (most popular) partial ledger state update for that cycle, Ln(prod), is used to

create these new transaction entries and append them to the final ledger state update

generated for that cycle. It is therefore crucial that a majority of producers succeed in

generating that list in order to generate the same complete ledger state update. A complete

ledger state update should comprise the list of transaction entries and transaction signatures

included in a partial ledger state update as well as the compensation entries rewarding the

producers.

The voting process thus consists in creating the final list of identifiers involved in the

production of the partial ledger state update. As explained below the final list Ln(prod) is

obtained by merging the partial lists included in the producers’ candidate. A producer Pj could

have produced a first hash value h∆j different to yet added his identifier to Lj(prod) when

building its candidate cj in the attempt to collect some token reward. In such scenario Idj would

be an element of the list included in cj (or any other producer node controlled by Pj), but it

wouldn’t be included in any other list {Lk(prod)}∀ k ∈ P/j. To prevent such malicious behaviour,

a rule imposes that Pj only appends to the final list Ln(prod) the identifier of a producer included

in the list Lk(prod) of a candidate ck satisfying if and only if that identifier is included

in at least P/2 lists {Lk(prod)}k=1,..,Vj associated to a candidate ck satisfying . Only a

producer controlling half or more of the producer nodes would succeed in including its

identifier into the final list Ln(prod).

Although this eliminates the risk of unethical behaviour from the producer, this also means

that there would be little incentive for a producer to broadcast its vote if its identifier was not

included in Ln(prod). However, the probability that a producer compiles the correct final list

Ln(prod) strongly depends on the number of votes collected. The more votes collected by a

producer, the greater the probability that said producer will compile the complete final list.

Although a producer may not have produced the correct partial ledger state update,

participating in the voting process is, therefore, an important contribution to the overall

consensus protocol and should entitle the producer nodes to some reward. To that end a

producer Pj can use the identifier of other producers included in their vote and create a second

list Lj(vote) to account for their participation in the voting process.

Pj follows a series of step for a period ∆tv0 (∆tv0 < ∆tv):

43

1. Pj creates a new list Lj(vote) and appends to said list the identifier of any producer Pk who

forwarded a candidate ck satisfying .

2. Pj creates the final list Ln(prod) and appends to said list the identifier of a producer

included in the list Lk(prod) of a candidate ck satisfying if and only if that

identifier is included in at least P/2 lists {Lk(prod)}k=1,..,Vj associated to a candidate ck

satisfying .

3. Pj then creates a list LCE of compensation entries for each producer whose identifier is

included in Ln(prod). Each producer receives xh tokens. Assume that Cn ≤ P identifiers are

included in Ln(prod) and X is the total number of tokens injected per cycle for the pool of

P producers. The quantity xh is defined such that Cnxh = fprodX + xf where xf represents the

total number of fees collected from the mn−1 transactions and fprod represents the fraction

of new tokens injected per cycle and distributed to the producers who built the correct

ledger state update. The remaining (1 − fprod)X tokens are distributed to other

contributing nodes in the network. A part of this remainder goes to the producers who

voted correctly on the previous ledger cycle update. Let Ln−1(vote) be the list of the

identifiers of producers who voted correctly on the previous ledger cycle update Cn−1. We

later demonstrate how such a list is derived during a ledger cycle. For now, let’s assume

that LCE includes compensation entries for producers involved the production of the

ledger state update for this ledger cycle Cn and the producers involved in the voting

process of the preceding cycle Cn−1.

4. Pj then creates the candidate ledger state update for Cn including the reward allocated to

the producers for their contribution:

LSUj = LfE || dn || LCE

Pj then computes its vote (or producer vote):

 vj

j (5.3)

which includes the hash of the candidate ledger state update (or second hash value) and

a partial list of identifiers of producers who designated the correct candidate partial

ledger state update corresponding to hmaj.

5. Pj then forwards vj to the other producers and collects the producer votes issued by its

peers. Figure 5.4 illustrates the different steps followed by Pj during the voting phase.

= H(LSUj) || #(Lj (vote)) || Id

44

Figure 5.4: Flowchart illustrating the series of steps followed by a producer Pj during the voting phase of the ledger cycle.

Ballot collection

During the voting phase, the producer Pj collects the producer votes broadcast by its peers. At

the end of the voting phase (t = tv + ∆tv), the producer Pj holds Uj producer votes in its cache with

Uj ≤ Cn where Cn ≤ P is the actual total number of producers who correctly computed hmaj.

5.2.4 Synchronisation Phase

Final ledger state update generation and broadcast

The last phase (a.k.a synchronisation phase) of a ledger cycle starts at t = ts, with ts = tn,0 +

∆tp +∆tc +∆tv, and lasts for a period ∆ts, therefore ending at ts +∆ts = tn,0 +∆tcycle. During a period

∆ts0 < ∆ts, Pj executes the following steps:

1. Pj defines the ledger state update ∆Ln for the cycle Cn as:

H(∆Ln) = max[unique(H(LSUk)) ∀ k ∈ {Uj}] and the associated number of votes collected:

Umaj = count[(H(LSUk) = H(∆Ln)) ∀ k ∈ {Uj}] and verifies that Umaj >

Uthreshold.

2. Pj creates a new list Ln(vote) and append to Ln(vote) the identifier of a producer included

in the list Lk(vote) of a vote vk satisfying H(LSUk) = H(∆Ln) if and only if the identifier is

included in at least Cn/2 lists {Lk(vote)} associated to a producer vote vk satisfying H(LSUk)

= H(∆Ln). Note that Cn can be easily computed as it corresponds to the number of producer

identifiers who correctly computed the ledger state update and are therefore included in

Ln(prod).

45

3. If Pj generated the correct ledger state update ∆Ln, it can write it to DFS which will return

it with a content-based address An.

4. A Producer Pj then creates the following output quantity (or producer output):

 oj

j (5.4)

The producer then broadcasts oj to the network.

Ledger state synchronisation across the network

During the time period [ts,ts +∆tcycle], user nodes collect {ok}∀k∈P producer outputs broadcast by

the producers. By extracting the identifier Idk embedded in any collected output ok, a user node

can easily compile a list of producer identifiers having broadcast the same second hash value

H(∆Ln) (concatenated with the same list Ln(vote)). Upon receiving x > P/2 identical addresses

{Ak = An}k∈x, the user nodes can read the common address content (∆Ln) from DFS. Using ∆Ln a

user node can safely synchronise their local copy of the ledger and write it to their DFS if not

already done. The balance of accounts stored on the ledger are updated and the producers

effectively collect their rewards.

Worker nodes also store the list Ln(vote) embedded in each ok output. If selected to be a

producer for the next cycle Cn+1, a worker can use it to generate the reward allocated to the

producers who correctly voted for the accurate ledger state update during the ledger cycle Cn.

Figure 5.5 summarises the different phases of the ledger cycle.

The various parameters and thresholds mentioned in this chapter and their impact on the

levels of security and confidence in the successful production of a ledger state update are

discussed in section 6.2.

= A n || #(L n (vote)) || Id

46

Figure 5.5: Illustration of the different phases followed by a producer during a ledger cycle.

47

Chapter 6

Security Considerations
Whenever financial value is stored on a distributed system, there will be greater incentive to

attack the system in the attempt to take control of financial assets or simply disrupt the system

to create or destroy existing assets. With no centralised entity to control access and check

validity it is up to the peers on the network to ensure its security. Through consensus and the

underlying protocols of the network a secure environment must be created to allow

transactions to take place in a trust-less environment.

6.1 Selection of Worker and Producer Nodes
The primary attack of concern for all blockchains and DLT platforms is the subversion of their

consensus protocol and is generally referred to as a 51% attack. Such an attack is made possible

when an entity or group of entities collude to have enough influence on the network to produce

a block or ledger state update with invalid transactions, in the attempt to alter the ledger

integrity. Depending on the protocol, the influence can be in computing power or number of

nodes and exceeds 50% of the relevant resource.

An attack could be performed for many reasons aside attempting to steal money from a

network, including to discredit or shake trust in a network. A consequence of a successful attack

would likely be to reduce token prices. Although there is no tangible proof of this, it could

explain why 51% attacks are not too common. Nevertheless, it remains important to prevent

and mitigate the risk of an attack as much as possible.

The probability of a 51% attack (P51) typically depends on the algorithm used to produce a

valid block or ledger update. When considering PoW-based algorithms, P51 can be expressed as

a function of the hash rate of network nodes. Since the consensus-based protocol on the Catalyst

network as laid out in section 5 does not rely on solving a cryptographic puzzle, the concept of

hash rate of nodes involved in the ledger state update is not relevant to quantify the probability

or the cost of an attack on Catalyst network. The number of nodes involved in the production of

a ledger state update is however relevant, as explained in this section.

The probability of a successful 51% attack on Catalyst network implies that a malicious

entity (or group of entities) succeeds in controlling more than half the producer nodes selected

to produce the ledger state update during a ledger cycle, giving that entity the power to tamper

with the ledger state. The probability P51 depends on the following parameters:

• N : the total number of nodes in the worker pool.

• P : the subset of producer nodes selected to perform work for one ledger cycle (P ≤ N).

• O : the number of malicious nodes in the worker pool (0 ≤ O ≤ N). This is a total subset of

malicious nodes colluding to perform an attack on the network.

48

• p : the number of malicious nodes in the subset P of producers. (0 ≤ p ≤ P).

An attack can be considered successful for any value p ∈ [p0,P] where p0 = P/2 + 1 which is

equivalent to p > 50%P. When P ≈ N, i.e. the number of producers selected during a ledger cycle

is very close to the total number of nodes in the worker pool, the absence of a randomness

element in the selection of P producers makes it easy to compute the probability of a successful

attack on the network: P51 ≈ O/N. A malicious entity would know exactly when an attack can

successfully be performed, that is when O > N/2.

When can there be expressed by the discrete sum:

) (6.1)

where PA(p) represents the probability of having p malicious nodes in the set P. When the

ratio between the total number of nodes N and the number of nodes P is large (N > 20 × P) it

can be expressed as follows:

 (6.2)

A represents the number of possible combinations for choosing p nodes from O malicious

nodes. B represents the number of possible combinations for choosing good (non-malicious)

nodes for the remaining N − O nodes in the worker pool. Finally, C corresponds to the number

of available combinations for choosing P nodes from the pool of N nodes.

In equation 6.2, PA(p) is the probability mass function of a hypergeometric distribution over

the set of parameters {N,O,P}. Note that such expression is valid for max(0,O + P − N) ≤ p ≤

min(O,P).

There are two main arguments behind having a large number of N nodes:

• To account for the fact that most nodes with sufficient resources may want to join the

worker pool and receive tokens as reward for their contribution to the ledger state

management

• To make it increasingly costly for any malicious entity to control more than half the nodes.

As explained in section 2.2, prior to joining the worker pool, nodes are part of a worker

queue. Nodes in the worker pool are granted a work pass valid for finite period time. As a result,

a varying number of nodes leaves the worker pool at each ledger cycle. Although the size of the

worker pool might be constant (N nodes), the selection of nodes forming the worker pool

changes over time. The mechanism used to define a score for nodes in the work queue is

designed to prevent malicious nodes from gaining control of a large fraction of worker nodes.

Nevertheless, as we derive the probability P51 in this section, we must stress that the fraction

49

O/N may change (increase or decrease) over time and should be considered if computing the

probability over a series of ledger cycles.

When the probability of a successful attack can be estimated using the cumulative

hypergeometric distribution function (CDF) for p ∈ [p0,P]. In this paper, we provide probability

estimates obtained using scipy.stats Python library. The graphs presented are obtained using

matplotlib.pyplot library. Rather than computing the CDF, the probability measurements are

obtained using the survival probability (SDF), which is the inverse of CDF but is known to

provide more accurate results1.

As an example, let’s assume a rather large number of nodes in the worker pool, N = 20,000,

out of which 5% are selected as producers for a given cycle (P = 1,000). Let’s further assume a

ratio O/N = 20%, e.g. 1 in every 5 nodes in the worker pool is controlled by a malicious entity

(O = 4000). The probability of a successful attack is calculated using the SDF of an

hypergeometric distribution using these set of parameters and amounts to: P51 = 1 −

SDF(20000,4000,1000) ≈ 10−9%. For the same set (N,P), the probability of a successful attack

reaches 0.04% for O/N = 45% of malicious nodes in the worker pool.

Figure 6.1 shows the probability of a successful control of more than 50% of the producers

as a function of the number of producers for four different worker pool sizes and two attack

scenarios: when a malicious entity controls O/N = 45% of the worker nodes in blue, and in

orange when a malicious controls O/N = 35% of the worker nodes in blue. For N = 20000, the

probability remains below 10−9 if P <≈ 4000 while for a smaller worker pool size (N = 5000),

the ratio P/N must be at close to 50% to prevent a successful control of more than 50% of the

producers.

(a) N = 2000 (b) N = 5000

1 See https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.hypergeom.html for more details.

50

 (c) N = 10000 (d) N = 20000

Figure 6.1: Probability of 51% attack as a function of P for various worker pool size (N =
{2000,5000,10000,20000}) when a malicious entity controls O/N = 45% of the worker nodes in blue, and in
orange when a malicious controls O/N = 35%

Figure 6.2 displays the minimum ratio P/N required to maintain a probability P51 below 10−6

and 10−9 for various malicious scenarios (O/N ratio between 30% and 45%) . This shows that

as N increases the required P/N ratio required for the same security level decreases.

 (a) P51 < 10−6 (b) P51 < 10−9

Figure 6.2: This graph shows the P/N ratio required for maintaining a probability of a 51% attack below two thresholds
(10−6 on the left and 10−9 on the right) as a function of the number N of worker nodes.

This series of graphs gives a good indication on what pair of parameters (N,P) to consider

for a high resilience to 51% attack. Given a number of nodes in the worker pool, we can deduce

the number of producer nodes to select during one ledger cycle. Inversely, given a number of

producers for a ledger cycle, we can define a minimum size for the worker pool. As detailed in

the next section, the number of producers selected for a ledger cycle is important to ensure that

a consensus can be reached on the correct ledger state update to distribute to the rest of the

network.

6.2 Production of a Ledger State Update
The previous section discusses the level of security against 51% attack when a malicious

entity controlling more than half the producer nodes can attempt to tamper with the ledger

state update. Specifically, the security of the consensus mechanism is considered as a function

51

of the parameters (P,N). As N becomes large and the ratio P/N is low, it becomes very unlikely

for a malicious entity to gain control of the worker pool, notwithstanding an increasingly

expensive cost of attack.

In this section, we explore the confidence level associated with the production of a ledger

state update. During the last phase of a ledger cycle, each node on the network updates their

local copy of the ledger with what they perceive as being the ledger state update generated and

approved by the producers. Each user node must collect x > P/2 identical producer outputs from

the producers to safely conclude that a consensus was reached amongst the producers. Recall

that a producer Pj broadcasts its output oj = An || #(Ln(vote)) || Idj to the network. The producer

identifier Idj is used by a user node to distinguish between the outputs generated by two

producers. The correct address Ac(∆Ln) is thus defined by Ac(∆Ln) = max[unique(ok /|

Idk)/|#(Ln(vote)) ∀ k ∈ {P}] with a/|b denoting a removal function of b in a, and x = count[(ok /|

Idk) = Ac(∆Ln) || #(Ln(vote)) ∀ k ∈ {P}]. Note that if x = P, all producers agree on the correct ledger

state update for cycle Cn.

As laid out in section 5.2, a producer executes a series of steps in each phase of the ledger

cycle. The producer can only move to a phase if a set of conditions are fulfilled in the previous

phase. For a producer Pj, the first three phases consist of generating a quantity αj that obeys

certain criteria, and then broadcasting it to its producer peers while collecting the quantities αk

produced and broadcast by other producers {Pk}k∈P/j:

1. Construction phase: αj = hj hj is the producer quantity generated by Pj, using the set of

transactions stored in its mempool. It comprises the first hash value h∆j, which includes

the partial ledger state update (excluding any compensation entry) found by Pj and the

compressed data structure for the transaction signatures, concatenated with Pj identifier

Idj (see equation 5.1): hj = h∆j || Idj.

Participation All producers {Pj}∀j∈P participate in the construction phase.

Time hj must be broadcast before tp + ∆tp0. Other producer quantities are collected during

the time period [tp,tp + ∆tp].

Quality Each transaction included in the ledger state update must verify a list of validity

checks (see section 4.5).

2. Campaigning phase: αj = cj cj is the producer candidate generated by Pj (see equation 5.2):

with the hash of the most common partial ledger state update found by Pj given the

set of first hash values collected during the construction phase. Lj(prod) is the partial list

of identifiers compiled by Pj which includes the identifier of any producer having

broadcast a first hash value corresponding to the most common, or candidate, partial

ledger state update.

Participation All producers {Pj}∀j∈P participate in the campaigning phase.

Time cj must be broadcast before tc + ∆tc0. Other producer candidates are collected during

the time period [tc,tc + ∆tc].

 Quality • The number Cj of producer quantities collected by Pj must verify Cj ≥

52

Cmin.

• The number of identical first hash values

{Cj}] must verify Cmaj ≥ Cthreshold.

3. Voting phase: αj = vj vj is the producer vote generated by Pj (see equation 5.3): vj = H(LSUj)

|| #(Lj(vote)) || Idj which includes the hash (or second hash value) of the candidate ledger

state update LSUj = LfE || dn || LCE generated by Pj. Lj(vote) is the partial list of identifiers

compiled by Pj which includes the identifier of any producer having broadcast a candidate

partial ledger state update corresponding to the most common partial ledger state

update. LCE is the list of compensation entries created using the identifiers included in the

complete and final list Ln(prod) of Cn producers having broadcast a first hash value

corresponding to the most common partial ledger state update. LSUj thus includes the

compensation entries for the producers {Pk}∀j∈Cn who generated a producer quantity hk

verifying h∆k = H(LfE || dn).

Participation Only producers finding a] satisfying

hmaj = hj participate.

Time vj must be broadcast before tv + ∆tv0. Other producer votes are collected during the

time period [tv,tv + ∆tv].

 Quality • The number Vj of producer candidates collected by Pj must verify Vj ≥

Vmin.

• The number of identical partial ledger state update hashes

hmaj)

∀ k ∈ {Vj}] must verify V maj ≥ Vthreshold.

• Ln(prod) includes the identifier of producers included in at least P/2 lists

{Lk(prod)}k=1,..,Vj associated to a producer candidate ck satisfying .

4. Synchronisation phase: αj = oj oj is the producer output generated and broadcast by Pj

(see equation 5.4):

oj = An || #(Ln(vote)) || Idj. It includes the DFS content-based address An of the approved

ledger state update ∆Ln.

Participation All producers {Pj}∀j∈P may participate in the synchronisation phase.

However, only the ones having successfully compiled the ledger state update LSUj =

∆Ln may broadcast the address An to the network.

Time oj must be broadcast before ts +∆ts0. User nodes must collect at least x identical

addresses An during the time period [ts,ts + ∆ts] and request the corresponding ledger

state update to synchronise their local copy of the ledger.

 Quality • The number Uj of producer votes collected by Pj must verify Uj ≥ Umin.

• The number of identical second hash values Umaj = count[(H(LSUk) = H(∆Ln)) ∀ k

∈ {Uj}] must verify Umaj > Uthreshold.

• Ln(vote) includes the identifier of producers included in at least Cn/2 lists

53

{Lk(vote)}k=1,..,Cn associated to a vote vk satisfying H(LSUk) = H(∆Ln). Cn

corresponds to the number of identifiers of producers who correctly computed

the partial ledger state update and are therefore included in Ln(prod).

The probability P(x > P/2) that x > P/2 during the synchronisation phase depends on a series

of criteria:

1. (Cmin,Cthreshold): a producer needs to collect enough individual producer quantities (at least

Cmin) and find a majority (at least Cthreshold) of identical partial ledger state update hashes

to be able to issue a producer candidate. Cmin is typically defined as a fraction of

P: Cmin = fCP with 0 < fC < 1. On the other hand, the definition of Cthreshold is more complex

and depends on Cj.

Although in theory Cthreshold could be set at Cj/2, a higher threshold must be chosen to allow

a producer to decide on a candidate partial ledger state update in good confidence.

Indeed, one must account for the statistical uncertainty associated to the ratio Cmaj/Cj due

to the size of the data sample used to compute this ratio. Moreover, there should be no

ambiguity on the choice of a candidate, should for instance a second set of identical hash

values of size close to Cj/2 be found in an attempt to tamper with the ledger state by a

malicious entity controlling a large number of worker nodes. The confidence interval on

a ratio r = Cmaj/Cj is defined as:

 (6.3)

Where z is a score associated to the confidence level in r (z = 4.22 for a 99.999%

confidence level) and the remaining expression is the standard error of the ratio estimate.

In an scenario where only two types of first hash values are collected by a producer Pj,

 compiles the two ratios r1 = x1/Cj and r2 = x2/Cj. Since x2 =

Cj − x1, the two ratios have the same margin error: ∆r1 = ∆r2. As illustrated in Figure 6.3, if

the margin error associated to the two ratios are such that r1 − ∆r1 < r2 + ∆r2, Pj cannot say

with certainty that a majority of nodes agrees, even if r1 > 50%. A decision can only really

be made if r1 > 50% + ∆r1. Figure 6.3(left) shows that for a r1 = 0.7 the producer must

collect at least Cj = 110 data in order to remove any ambiguity with a confidence level at

99.999%. Indeed, if r1 = 70% and Cj = 2000, the second ratio r2 would represent at best

30% of the data collected by the producer, the statistical uncertainty on these two ratios

would leave a significant gap between 34.3% and 65.7%. For V = 1000, that gap would be

reduced to [36.1%,63.9%], still large enough to give enough confidence to a producer that

a clear majority of nodes agree on a common data. This is illustrated in Figure 6.3(right)

when R1 = 0.6. It can be seen that when Cj = 200 that there would be an overlap between

the margin errors around r1 and r2, while when Cj = 2000 the producer can conclude with

a confidence level of 99.999% that r1 > r2.

Cthreshold is therefore defined for confidence level (CL) as:

 (6.4)

54

For a confidence level at 99.999%, Cthreshold can be expressed as:

 (6.5)

Figure 6.3: Left: ri ± ∆ri (i = 1 or 2) as a function of P, the size of the producers pool, when r1 = 60%. Right: r ±
∆r at 99.999% confidence level, for two values of P (200, 2000) when only two types of hash are collected by
a producer, when r1 = 70%.

2. (Vmin,Vthreshold): a producer needs to collect enough individual producer candidates (at

least Vmin) and find a majority (at least Vthreshold) of identical partial ledger state updates

embedded in the producer candidates to be able to issue a vote. Vmin is typically defined

as a fraction of P: Vmin = fV P with 0 < fV < 1. Vthreshold is defined following the same approach

considered for Cthreshold:

 (6.6)

3. (Umin,Uthreshold,Cn): a producer needs to collect enough individual producer votes (at least

Umin), find a majority (at least Uthreshold) of votes with identical second hash values, and

hold a local copy of the ledger state update corresponding to the most common second

hash value to be able to generate a producer output including the content-based address

of the next ledger state update stored on DFS and broadcast it across the network. Two

producer outputs are considered identical if they include the same DFS address of a

complete ledger state update and the same list Ln(vote). Two complete ledger state

updates are therefore identical notably when using the same list Ln(prod) to create the

compensation entries. The list Ln(prod) comprises the identifiers of the Cn producers that

produced the most popular partial ledger state update (without compensation entries)

during the construction phase. Cn is typically defined as a fraction of P: Cn = fprodP with 0 <

fprod < 1. Umin is thus defined as a fraction of Cn: Umin = fUCn with 0 < fU < 1.

Uthreshold is defined following the same approach considered for Cthreshold:

 (6.7)

In summary the probability P(x > P/2) that x > P/2 can be expressed as a function of

55

P,Cmin,Cn,Vmin,Umin:

The tests conducted on the gossip protocol implemented on Catalyst suggest that a high

percentage of nodes (95 − 99%) in a large network (O(10,000) nodes) will successfully collect

data from all their peers. Furthermore tests on a smaller network (O(1000) nodes) such as the

sub-networks of workers and producers in charge of producing the ledger state update during

a ledger cycle gives the percentage of nodes collecting the data from all their peers as close to

99 − 100%. As a result the numbers (Cj,Vj) of data collected by a producer Pj are naturally

expected to be close to P and Uj close to Cn. A simulation analysis was done to determine the

optimal set of parameters (Cn,Cmin,Vmin,Umin) to ensure a probability P(x > P/2) greater than

99.999% for various sizes of the producers pool P. Figure 6.4 displays a n-ary tree (n = 4)

illustrating the minimum sets of parameters (fprod,fC,fV ,fU) found for a pool of producers made of

(a) 200 nodes and (b) 500 nodes when varying the parameters (fprod,fC,fV ,fU) between 0.75 and

0.95 with a step of 0.05. We observe that for P = 200, when fprod = 80% of producers generate

the correct ledger state update, P(x > P/2) > 99.999% when all thresholds are set at 80%. The

values represented in the tree branches show how the thresholds naturally decrease as the

number P of nodes in the pool of producers increases.

Figure 6.4: Minimum sets of parameters (fprod,fC,fV ,fU) found for P(x > P/2) > 99.999% for P = 200 (left) and P = 500
(right).

Figure 6.5 shows the minimum common threshold found for (fC,fV ,fU) as a function P

when fprod = 75% and fprod = 95%.

At P = 1000, the two curves converge to a common threshold fC = fV = fU = 76% ± 1%. When

fprod = 75%, we find that in approximately 95% of the

conducted tests, x = Cn, all producers with an identifier

included in Ln(prod) broadcast the same quantity.

An || #(Ln(vote)). When P = 200 and fprod = 75%, a

higher common threshold fC = fV = fU = 85% ± 1% is

found to satisfy P(x > P/2) > 99.999% and x = Cn in

roughly 80% of the tests.

56

Figure 6.5: Minimum common set of parameters (fC,fV ,fU) as a function of P when fprod = 75% (blue) and fprod = 95% (green).

The decision regarding the thresholds chosen for generating the ledger state update thus

depends on P. As explained in section 6.1, the choice of P as well as that of the worker pool

size N also influence the resistance to 51% attack. Figure 6.1 shows that in order to keep

the probability of a successful 51% attack below 1 in a billion when N = 2000, the size of

producers must comprise at least P = 1200 producers. The simulation conducted in this

section shows that when P ≥ 1000 a common threshold value fC = fV = fU = 80% ensures that

a consensus can be reached at 99.999% confidence level when fprod ≥ 75% for any x value

greater or equal to P/2.

57

6.3 Signature Scheme

6.3.1 Rogue Key Attack

When Schnorr signatures are used to generate an aggregated signature of a transaction they

are vulnerable to an attack known as Rogue Key attack. Rogue Key attacks performed by a

malicious entity consists of generating an aggregated signature in such a way that they possess

the public/private key pair for that signature. In the Schnorr signature scheme, the public key

of participants is aggregated and the sum represent the public key associated to the signature.

Assume that an honest participant uses its public key Qa in the transaction and a malicious

participant possesses Qb. By sending the public key Qm = Qb − Qa to the honest participant, the

malicious entity has access to the transaction as they will hold the private key for Qb. This is

because when the keys are aggregated i.e. Qm + Qb the aggregated signature would be Qb, for

which the malicious user holds the private key (the honest user would not). For an aggregated

public key, there should be no user that has a private key equivalent as it should be used to

create a signature that can be verified that all users in the transaction participated.

The aggregation of public keys used in Catalyst which is based on Mu-Sig [27] signature

scheme that is not vulnerable to this form of attack. Mu-Sig is protected from this form of attack

as the scheme does not require a user to demonstrate each public key, only the sum of all the

public keys. By not verifying individual public keys, a key rogue attack is not possible. Only one

public key is needed for the verification (the aggregated key) for which there will not be an

equivalent private key.

6.3.2 Quantum Attack

Quantum computers pose a very real threat to the encryption techniques used in blockchains

in the medium to long term [28]. The threat is through the use of Shor’s algorithm. A quantum

attacker using Shor’s algorithm on a quantum computer can gain an exponential speed-up in

solving the discrete logarithmic problem. The assumption of security the discrete logarithmic

functions the primary basis as to which all elliptic curve cryptography is based. This means that

even the schema demonstrated here will be vulnerable to attack. The use of aggregated

signatures would provide some resistance; however, this resistance would be negligible.

It must be impressed that this is not an issue for the near term and thereby, these schemas

are highly secure and efficient currently. The most efficient algorithm for classical computers

to solve the discrete logarithm problem is the Pollard’s rho[30], this does not run in polynomial

time. While Catalyst is not currently resistant to quantum attack, this is a challenge that will be

faced by all major distributed ledgers over time.

58

Conclusion
The individual technical components underpinning Distributed Ledger and Blockchain

Technologies have existed for decades. As the 1st generation blockchain, Bitcoin managed to

recombine these previously established elements in a unique fashion so as to instil and enable

trust in a trust-less system, thus achieving decentralisation and eliminating the need for a

centralised authority. Whilst completely revolutionary at the time, the implementation and

expansion of this new approach uncovered limitations and hurdles to both expanded use and

ultimately mainstream adoption. 2nd generation DLTs and blockchains built and improved upon

this original foundation but fall short of resolving all associated issues.

Catalyst has developed a distributed network, Catalyst, to solve the issues of previous DLTs

and blockchains, improving upon those which came before, resolving such challenges and

enabling an equitable and proportionate compensation to participants on the network. Catalyst

was designed around the notion that a democratic and ethical network can exist which is

secure, decentralised, scalable and private.

Catalyst code base does not fork from a previously existing projects and includes original

and innovating work, including a new collaborative and environment-friendly consensus-based

protocol, the possibility to process both confidential and non-confidential transactions as well

as smart contracts, an efficient peer-to-peer communication layer and a multi-level data

architecture for a lean ledger database storing a variety of data.

This paper gives an overview of Catalyst consensus protocol. Other papers, currently under

preparation, give details of other technical considerations behind Catalyst Network, including

the runtime environment and framework for smart contracts and dApps, network

performances measurements and the technical specifications of Catalyst base code.

Bibliography

[1] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.

https://bitcoin.org/bitcoin.pdf. Oct. 2008.

[2] UK Government Chief Scientific Adviser. Distributed Ledger Techonology: beyond block

chain. https://assets.publishing.service.gov.uk/government/uploads/system/

uploads/attachment_data/file/492972/gs-16-1-distributed-ledgertechnology.pdf. 2016.

[3] D. Roe. 10 Obstacles To Enterprise Blockchain Adoption.

https://www.cmswire.com/information-management/10-obstacles-toenterprise-

blockchain-adoption/. June 2018.

[4] D. Hankerson and A. Menezes. “NIST Elliptic Curves”. In: Encyclopedia of Cryptography
and Security. Ed. by H. C. A. van Tilborg and S. Jajodia. Boston, MA: Springer US, 2011,
pp. 843–844. isbn: 978-1-4419-5906-5. doi:

10.1007/978-1-4419-5906-5_255. url: https://doi.org/10.1007/978-1-4419-5906-5_255.

[5] Monero Project. Monero: the secure, private, untraceable cryptocurrency.

https://github.com/moneroproject/monero/tree/bc208be63d880871f4f1d6b51a7b35abd5

e9b8f0. 2014.

[6] D. J. Bernstein and T. Lange. Failures in NIST’s ECC standards.

https://cr.yp.to/newelliptic/nistecc-20160106.pdf. Jan. 2016.

[7] D. J. Bernstein. Ed25519: high-speed high-security signatures.

https://ed25519.cr.yp.to/. 2017.

[8] coinguides. Blake2b Algorithm – List of Blake (2b) coins, miners and its hashrate.

https://coinguides.org/blake2b/. 2017.

[9] G. Maxwell. Confidential Transactions.

https://people.xiph.org/~greg/confidential_values.txt. 2015.

[10] B. Bunz et al. Bulletproofs: Short Proofs for Confidential Transactions and More.

https://eprint.iacr.org/2017/1066.pdf. 2019.

[11] C. Sherlock et al. “Efficiency of delayed-acceptance random walk Metropolis algorithms”.

In: arXiv:1506.08155v1 (June 2015).

[12] S. Gal-On et al. Exploring CoreMarkTM – A Benchmark Maximizing Simplicity and Efficacy.

https://www.eembc.org/techlit/articles/coremark-whitepaper.pdf.

[13] S. Dziembowski et al. Proofs of Space. https://eprint.iacr.org/2013/796.pdf. Aug. 2015.

[14] Ameya. Sybil Attack and Byzantine Generals Problem.

https://medium.com/coinmonks/sybil-attack-and-byzantine-

generalsproblem2b2366b7146b. July 2018.

[15] IPFS. https://ipfs.io/.

[16] G. Maxwell et al. Simple Schnorr Multi-Signatures with Applications to Bitcoin. https:

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://www.cmswire.com/information-management/10-obstacles-to-enterprise-blockchain-adoption/
https://www.cmswire.com/information-management/10-obstacles-to-enterprise-blockchain-adoption/
https://www.cmswire.com/information-management/10-obstacles-to-enterprise-blockchain-adoption/
https://www.cmswire.com/information-management/10-obstacles-to-enterprise-blockchain-adoption/
https://www.cmswire.com/information-management/10-obstacles-to-enterprise-blockchain-adoption/
https://www.cmswire.com/information-management/10-obstacles-to-enterprise-blockchain-adoption/
https://www.cmswire.com/information-management/10-obstacles-to-enterprise-blockchain-adoption/
https://www.cmswire.com/information-management/10-obstacles-to-enterprise-blockchain-adoption/
https://www.cmswire.com/information-management/10-obstacles-to-enterprise-blockchain-adoption/
https://www.cmswire.com/information-management/10-obstacles-to-enterprise-blockchain-adoption/
https://www.cmswire.com/information-management/10-obstacles-to-enterprise-blockchain-adoption/
https://www.cmswire.com/information-management/10-obstacles-to-enterprise-blockchain-adoption/
https://www.cmswire.com/information-management/10-obstacles-to-enterprise-blockchain-adoption/
https://www.cmswire.com/information-management/10-obstacles-to-enterprise-blockchain-adoption/
https://www.cmswire.com/information-management/10-obstacles-to-enterprise-blockchain-adoption/
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://doi.org/10.1007/978-1-4419-5906-5_255
https://github.com/monero-project/monero/tree/bc208be63d880871f4f1d6b51a7b35abd5e9b8f0
https://github.com/monero-project/monero/tree/bc208be63d880871f4f1d6b51a7b35abd5e9b8f0
https://github.com/monero-project/monero/tree/bc208be63d880871f4f1d6b51a7b35abd5e9b8f0
https://github.com/monero-project/monero/tree/bc208be63d880871f4f1d6b51a7b35abd5e9b8f0
https://github.com/monero-project/monero/tree/bc208be63d880871f4f1d6b51a7b35abd5e9b8f0
https://github.com/monero-project/monero/tree/bc208be63d880871f4f1d6b51a7b35abd5e9b8f0
https://github.com/monero-project/monero/tree/bc208be63d880871f4f1d6b51a7b35abd5e9b8f0
https://cr.yp.to/newelliptic/nistecc-20160106.pdf
https://cr.yp.to/newelliptic/nistecc-20160106.pdf
https://cr.yp.to/newelliptic/nistecc-20160106.pdf
https://cr.yp.to/newelliptic/nistecc-20160106.pdf
https://cr.yp.to/newelliptic/nistecc-20160106.pdf
https://cr.yp.to/newelliptic/nistecc-20160106.pdf
https://ed25519.cr.yp.to/
https://ed25519.cr.yp.to/
https://ed25519.cr.yp.to/
https://ed25519.cr.yp.to/
https://coinguides.org/blake2b/
https://coinguides.org/blake2b/
https://coinguides.org/blake2b/
https://coinguides.org/blake2b/
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://eprint.iacr.org/2017/1066.pdf
https://eprint.iacr.org/2017/1066.pdf
https://eprint.iacr.org/2017/1066.pdf
https://eprint.iacr.org/2017/1066.pdf
https://www.eembc.org/techlit/articles/coremark-whitepaper.pdf
https://www.eembc.org/techlit/articles/coremark-whitepaper.pdf
https://www.eembc.org/techlit/articles/coremark-whitepaper.pdf
https://www.eembc.org/techlit/articles/coremark-whitepaper.pdf
https://www.eembc.org/techlit/articles/coremark-whitepaper.pdf
https://www.eembc.org/techlit/articles/coremark-whitepaper.pdf
https://eprint.iacr.org/2013/796.pdf
https://eprint.iacr.org/2013/796.pdf
https://eprint.iacr.org/2013/796.pdf
https://eprint.iacr.org/2013/796.pdf
https://medium.com/coinmonks/sybil-attack-and-byzantine-generals-problem-2b2366b7146b
https://medium.com/coinmonks/sybil-attack-and-byzantine-generals-problem-2b2366b7146b
https://medium.com/coinmonks/sybil-attack-and-byzantine-generals-problem-2b2366b7146b
https://medium.com/coinmonks/sybil-attack-and-byzantine-generals-problem-2b2366b7146b
https://medium.com/coinmonks/sybil-attack-and-byzantine-generals-problem-2b2366b7146b
https://medium.com/coinmonks/sybil-attack-and-byzantine-generals-problem-2b2366b7146b
https://medium.com/coinmonks/sybil-attack-and-byzantine-generals-problem-2b2366b7146b
https://medium.com/coinmonks/sybil-attack-and-byzantine-generals-problem-2b2366b7146b
https://medium.com/coinmonks/sybil-attack-and-byzantine-generals-problem-2b2366b7146b
https://medium.com/coinmonks/sybil-attack-and-byzantine-generals-problem-2b2366b7146b
https://medium.com/coinmonks/sybil-attack-and-byzantine-generals-problem-2b2366b7146b
https://medium.com/coinmonks/sybil-attack-and-byzantine-generals-problem-2b2366b7146b
https://medium.com/coinmonks/sybil-attack-and-byzantine-generals-problem-2b2366b7146b
https://medium.com/coinmonks/sybil-attack-and-byzantine-generals-problem-2b2366b7146b
https://medium.com/coinmonks/sybil-attack-and-byzantine-generals-problem-2b2366b7146b
https://ipfs.io/
https://ipfs.io/
https://ipfs.io/
https://ipfs.io/
https://pdfs.semanticscholar.org/a4da/14a4329d7bf28e2ecbf9a3e42bf1faba523e.pdf?_ga=2.193608301.1119480105.1549621665-1692475185.1549621665
https://pdfs.semanticscholar.org/a4da/14a4329d7bf28e2ecbf9a3e42bf1faba523e.pdf?_ga=2.193608301.1119480105.1549621665-1692475185.1549621665

 //pdfs.semanticscholar.org/a4da/14a4329d7bf28e2ecbf9a3e42bf1faba523e.pdf?

_ga=2.193608301.1119480105.1549621665-1692475185.1549621665. Feb. 2019.

[17] digiconomist. Ethereum Energy Consumption Index (beta).

https://digiconomist.net/ethereum-energy-consumption. 2019.

[18] Blockchain. Blockchain Charts. https://www.blockchain.com/en/charts. May 2019.

[19] Etherscan. Ethereum Transaction Chart. https://etherscan.io/chart. May 2019.

[20] B. Gehring. Swiss Payment Monitor 2018, p18. swisspaymentmonitor.ch. 2018.

[21] G. Konstantopoulos. Understanding Blockchain Fundamentals, Part 1: Byzantine Fault

Tolerance. https://medium.com/loom-network/understanding-

blockchainfundamentalspart-1-byzantine-fault-tolerance-245f46fe8419. Accessed on 2012-

11-11. Dec. 2017.

[22] Blockchain.com. Hashrate Distribution.

https://www.blockchain.com/pools?timespan=24hours. Accessed on 2018-10-31.

[23] J. Tuwiner. Bitcoin Mining Pools.

https://www.buybitcoinworldwide.com/mining/pools. Jan. 2019.

[24] C. Lacina. The Inevitable Failure of Proof-of-Stake Blockchains and Why a New Algorithm

is Needed (Op-Ed). https://cointelegraph.com/news/the-inevitablefailure-of-proof-of-

stakeblockchains-and-why-a-new-algorithm-is-needed. May 2015.

[25] E. Krause. A Fifth of All Bitcoin Is Missing. These Crypto Hunters Can Help.

https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-thesecrypto-hunters-canhelp-

1530798731?mod=rss_Technology. July 2018.

[26] J. J. Robert and N. Rapp. Exclusive: Nearly 4 Million Bitcoins Lost Forever, New Study Says.

https://fortune.com/2017/11/25/lost-bitcoins/. Nov. 2017.

[27] G. Maxwell et al. Simple Schnorr Multi-Signatures with Applications to Bitcoin.

Cryptology ePrint Archive, Report 2018/068. https://eprint.iacr.org/2018/068. 2018.

[28] D. Aggarwal et al. “Quantum attacks on Bitcoin, and how to protect against them.

Quantum Physics”. In: arXiv:1710.10377 (Oct. 2017).

[29] J. J. Kearney and C. A. Perez-Delgado. Blockchain Technologies Vulnerability to Quantum

Attacks. unknown. 2019.

[30] A. Koundinya et al. “Performance Analysis of Parallel Pollard’s Rho Factoring Algorithm”.

In: arXiv:1305.4365 (May 2013).

https://pdfs.semanticscholar.org/a4da/14a4329d7bf28e2ecbf9a3e42bf1faba523e.pdf?_ga=2.193608301.1119480105.1549621665-1692475185.1549621665
https://pdfs.semanticscholar.org/a4da/14a4329d7bf28e2ecbf9a3e42bf1faba523e.pdf?_ga=2.193608301.1119480105.1549621665-1692475185.1549621665
https://pdfs.semanticscholar.org/a4da/14a4329d7bf28e2ecbf9a3e42bf1faba523e.pdf?_ga=2.193608301.1119480105.1549621665-1692475185.1549621665
https://pdfs.semanticscholar.org/a4da/14a4329d7bf28e2ecbf9a3e42bf1faba523e.pdf?_ga=2.193608301.1119480105.1549621665-1692475185.1549621665
https://pdfs.semanticscholar.org/a4da/14a4329d7bf28e2ecbf9a3e42bf1faba523e.pdf?_ga=2.193608301.1119480105.1549621665-1692475185.1549621665
https://pdfs.semanticscholar.org/a4da/14a4329d7bf28e2ecbf9a3e42bf1faba523e.pdf?_ga=2.193608301.1119480105.1549621665-1692475185.1549621665
https://pdfs.semanticscholar.org/a4da/14a4329d7bf28e2ecbf9a3e42bf1faba523e.pdf?_ga=2.193608301.1119480105.1549621665-1692475185.1549621665
https://digiconomist.net/ethereum-energy-consumption
https://digiconomist.net/ethereum-energy-consumption
https://digiconomist.net/ethereum-energy-consumption
https://digiconomist.net/ethereum-energy-consumption
https://digiconomist.net/ethereum-energy-consumption
https://digiconomist.net/ethereum-energy-consumption
https://digiconomist.net/ethereum-energy-consumption
https://digiconomist.net/ethereum-energy-consumption
https://www.blockchain.com/en/charts
https://www.blockchain.com/en/charts
https://www.blockchain.com/en/charts
https://www.blockchain.com/en/charts
https://etherscan.io/chart
https://etherscan.io/chart
https://etherscan.io/chart
https://etherscan.io/chart
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419
https://www.blockchain.com/pools?timespan=24hours
https://www.blockchain.com/pools?timespan=24hours
https://www.blockchain.com/pools?timespan=24hours
https://www.blockchain.com/pools?timespan=24hours
https://www.buybitcoinworldwide.com/mining/pools
https://www.buybitcoinworldwide.com/mining/pools
https://www.buybitcoinworldwide.com/mining/pools
https://www.buybitcoinworldwide.com/mining/pools
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://cointelegraph.com/news/the-inevitable-failure-of-proof-of-stake-blockchains-and-why-a-new-algorithm-is-needed
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://www.wsj.com/articles/a-fifth-of-all-bitcoin-is-missing-these-crypto-hunters-can-help-1530798731?mod=rss_Technology
https://fortune.com/2017/11/25/lost-bitcoins/
https://fortune.com/2017/11/25/lost-bitcoins/
https://fortune.com/2017/11/25/lost-bitcoins/
https://fortune.com/2017/11/25/lost-bitcoins/
https://fortune.com/2017/11/25/lost-bitcoins/
https://fortune.com/2017/11/25/lost-bitcoins/
https://eprint.iacr.org/2018/068
https://eprint.iacr.org/2018/068
https://eprint.iacr.org/2018/068

