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Abstract  
Distributed Ledger Technology (DLT) is undoubtedly one of the most disruptive new 

technologies to have emerged over the past decade. When the paper [1] was published in 2008 

by an unknown author under the famous pseudonym Satoshi Nakamoto, the world was shaken 

by a global economic crisis that considerably deteriorated our trust in central authorities. The 

new protocol embedded in this paper proposed a revolutionary approach to conduct transfers 

of digital assets, without the need of a third party, thus opening the door to a new economical 

approach with greater transparency, privacy and prosperity for all. Bitcoin was the first 

successful public blockchain to demonstrate the potential for this technology to be used as a 

decentralised yet trusted store of value. Building on this early success, next generation 

blockchains such as Ethereum and Neo demonstrated the potential for blockchain platforms to 

provide decentralised computing services, enabling more complex applications and reaching 

more markets than straight forward storage of value. Subsequent blockchains and distributed 

ledgers established use-cases in many other areas notably through the use of Internet of Things 

devices and machine learning techniques [2].  

As Bitcoin and other projects grew in popularity it became apparent that real challenges 

awaited this new technology. Indeed, the early systems were not built to meet the demand for 

services at scales comparable to those of cloud services. The main challenge of blockchain is to 

solve the so-called blockchain trilemma, building a system that can process a high throughput 

of transactions while ensuring the system integrity and accessibility to all. Additional concerns 

arise notably around environmental impact and the risk of power centralisation that would 

inevitably lead to the level of wealth disparity we observe in a world governed by centralised 

systems. A plethora of projects started with in mind to tackle these challenges (and more).  

Building a blockchain or distributed ledger is a complex task and for that reason most 

existing projects are clones, also known as forks, made from a small number of original 

blockchains. This allows organisations to benefit from already developed blockchains while 

modifying the elements relevant to their field. The problem with such an approach is that it 

restricts truly original thinking about wider technological issues such as how a network can 

scale or operate in environments for which the original Bitcoin blockchain was never designed. 

As a result of forking from the past, the fundamental issues restricting present blockchain 

technologies such as scale, privacy, performance and interoperability remain as much of a 

challenge today as when these early blockchains were first developed [3].  

Catalyst took a very different approach when designing a new core protocol ledger and 

accompanying distributed computing capability, starting from a set of operational 

requirements and developing a cohesive system that delivers to those requirements. The code 

base developed by Catalyst researchers and engineers is original and will be made available as 

an open-source software. To solve the fundamental issues inhibiting the growth of distributed 

ledger-based computing, engineers and researchers at Catalyst were and are encouraged to ask 

and rethink fundamental questions about the new distributed operating system they envisage.  
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Learning from popular and new blockchains and distributed ledgers as well as the wider IT 

industry, the team developed Catalyst, a full stack distributed network built to fulfil the real-

world potential of DLT, to enable the next generation of distributed computing applications and 

business models. This paper presents the consensus protocol of Catalyst Network.   
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Glossary 

Account (definition and types) – A digital account on Catalyst is a record of KAT tokens 

held by an entity (individual(s) or device(s)). It is defined by a digital address, associated to a 

public key, and a token balance. There are three types of accounts stored on Catalyst ledger: 

nonconfidential accounts within which the account balance is readable to anyone, confidential 

accounts within which the amount is obfuscated and held in the form of a commitment, and 

smart contract-based accounts.  

Blockchain – A blockchain is a peer-to-peer immutable decentralised ledger of information. 

It can be considered a decentralised database. Transactions created on a blockchain are 

bundled together into blocks, which are linked together using the hash of the previous block. It 

provides an indefinitely traceable history of all transactions that have taken place on the 

network.  

Confidential Transaction – A transaction within which a number of KAT tokens transferred 

are made invisible to all through the use of cryptographic commitment scheme. The validity of 

the transaction can still be checked without revealing the actual number.  

Consensus Mechanism – Consensus is a method of reaching agreement on a set of 

proposed changes submitted by users during a period. This changes the state of the ledger to 

reflect these agreed changes. Consensus on Catalyst uses a collaborative approach among nodes 

to generate a correct update of the ledger state.  

Distributed File System (DFS) – This is a storage mechanism, within which there is no 

single point of storage, but rather relies on an entire network. Allows files to be stored in an 

efficient and distributed manner. Catalyst DFS is used to store files as well as historical ledger 

state updates. DFS is maintained by some nodes on the network.  

Distributed Ledger Technology (DLT) – All blockchains are distributed ledgers, not all 
distributed ledgers are blockchains. It can be considered a database where there must be no 
central source of storage. Catalyst uses a ledger-based system where updates are made at each 
ledger cycle. These updates are used to change the overall state of the ledger.  

Eclipse Attack - An attack where almost all of peers connected to an honest node are 

controlled by one malicious entity, thereby allowing the malicious entity to control the 

information that is passed to that node.  

KAT tokens – A medium of exchange used on Catalyst Network, enabling users to perform 

actions on the ledger such as accessing services provided on the network or storing and 

retrieving files.  

Ledger Cycle – A fixed period after which the ledger state is updated using a consensus 

drawn by the producers. It is comparable to the block time in traditional blockchain.  
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Ledger Partition - A ledger partition is a database storing accounts of a given type: 

confidential, non-confidential or smart-contract based accounts.  

Node – A node is a device connected to the other nodes (its peers) on a peer-to-peer 
network. A node could be a physical device, like a single-board computer, or running in a virtual 
machine or containers.  

Pedersen Commitment - Cryptographic primitive that uses elliptic curves operations to 

obfuscate a value or statement. The value is hidden to others, but it can be revealed.  

Producers - The group of peers that have been selected to perform management work on 

the ledger for a specific ledger cycle. These producers collect new tokens as reward for the work 

they performed.  

Range Proof – Range proofs are used to determine the validity of a hidden value. The range 

proof allows the user to demonstrate unequivocally that the value being declared is within a 

specified range, without revealing the actual value.  

Smart Contract – Smart contracts are computer programs that define sets of rules and 

requirements and are deployed on a blockchain or distributed ledger. Such program can be 

triggered by transactions or messages generated by other codes, and/or once certain 

requirements have been fulfilled.  

Sybil Attack - A malicious entity spins up alternative identities all under their control. 

Thereby giving them increase control over a network. Sybil attacks can also be used to perform 

a 51% attack. It can also allow them the spam the network with messages.  

Transaction – Defined as a message broadcast on the network that represents the transfer 

of KAT tokens to and from a set of digital addresses. A transaction can be non-confidential 

(amount being transferred is visible to all) or confidential (amount in an entry is obfuscated 

using commitment schemes).  

Worker – A peer registered for worker queue that has been granted a pass for a finite period 

which entitles it to contribute to the ledger database management. This node can be selected at 

random to become a producer for a ledger cycle.  

Worker Pool - The group of nodes that have been granted a worker pass for a finite period. 

These nodes have a chance of being randomly selected to perform management work for a 

particular ledger cycle.  

Worker Queue - A queue of all the nodes that have declared themselves ready and capable 

of performing work for the ledger, yet have not been granted a worker pass. The worker pass 

allows peers to move from the worker queue to the worker pool.  
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Introduction 
This paper gives an overview of the database architecture of the distributed ledger and the 

structure and different types of transactions supported on Catalyst Network. It presents the 

consensus protocol behind Catalyst Network, a new consensus protocol based on the 

collaborative work performed by the network nodes, which uses the computing resources 

available across the network to efficiently and securely reach a consensus on the distributed 

ledger state updates. This paper is organised as follows:  

• Chapter 1 - Technical Specifications: this chapter describes the cryptographic libraries 

and tools used in Catalyst code base, including the choice of elliptic curve, hashing 

algorithm and the zero-knowledge proof protocols.  

• Chapter 2 - Peer-to-peer Network: this chapter describes the process followed by nodes 

joining the network and the process of peer identification. The different roles of nodes on 

Catalyst are explained, as well as the process to register on the network in order to 

perform work related to the network (and ledger database) management.  

• Chapter 3 - Ledger Database Architecture: this chapter gives an overview of the ledger 

database architecture as well as the different types of account stored on Catalyst. The 

concepts of current ledger state (CLS) and Distributed File System (DFS) for storing 

ledger state updates and files are introduced.  

• Chapter 4 - Catalyst Transactions: this chapter introduces the different transaction 

types supported on Catalyst and describes the transactions’ structure, including the 

process followed by users to generate and validate transaction signatures.  

• Chapter 5 - Catalyst Consensus Mechanism: this chapter presents the new consensus 

mechanism implemented on Catalyst.  

• Chapter 6 - Security Considerations: this chapter discusses security considerations 

with regards to the signature scheme and the consensus-based protocol on Catalyst.  
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Chapter 1  

Technical Specifications  

This chapter gives an overview of the cryptographic libraries and tools used to generate, sign 

and verify transactions as well as the consensus-based protocol on Catalyst ledger that permits 

the update of the distributed ledger across its peer-to-peer network.  

A distributed ledger can be described as a distributed database managed by a peer-to-peer 

network of computers. Many forms of data, from simple text files to media files or bank 

accounts can be stored on a database. In centralised network, a database is typically managed 

by a central computer or server and some parts of the database are accessible to users. On the 

contrary, decentralised database are replicated across the network, each computer holds a local 

copy of the database. The database is no longer managed by a central authority but instead by 

a plurality of computers (or nodes) on the network. The replication of the database across 

multiple nodes removes the vulnerability of single point of failure found with centralised 

databases. Users can exchange digital data stored on a database via exchange requests, referred 

to as transactions. To generate an exchange of data, the transactions are signed by the owners 

of the data being exchanged. Nodes on the network agree on the validity of the transactions 

issued by users via a consensus-based protocol, thus authorising the transactions to take place 

and the database to be updated accordingly across the network.  

DLTs relies on the generation of cryptographically secure ledger updates (or blocks in 

blockchain terms) in order to remove the need for a central authority. The ownership and 

exchange of data is made possible via the use of asymmetric encryption where users hold public 

/ private key pairs. The public key can be made visible to all users and is derived from the 

private key solely known by the user. Public keys act as users’ pseudonyms on the network. 

Knowledge of the private key is necessary to successfully sign a transaction. The digital 

signature therefore proves ownership of the data being transferred to another user. While it is 

impossible to derive the private key from a public key or digital signature (with classic 

computers) it is easy to verify, given a public key, that a signature could only have been 

generated by the user in possession of the associated private key.  

Two common asymmetric encryption techniques are Rivest-Shamir-Adleman (RSA) and 

Elliptic Curve (EC) cryptography. RSA’s hardness relies on the difficulty of integer factorisation 

of large prime numbers. EC cryptography relies on the hardness of the discrete logarithm 

problem. In DLTs, EC cryptography is chosen in preference to RSA due to the significantly 

smaller key size for the same level of security. On Catalyst, EC-based private keys have a 256bit 

size which provides a 128-bit security. An equivalent RSA-based key would have a 3072-bit size.  
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1.1  Choice of Elliptic Curve  
On the Catalyst ledger, Elliptic Curve (EC) cryptography is used to sign messages and generate 

proofs of knowledge of information amongst users without having to reveal any information.  

Throughout this paper, EC points are used for the creation of public keys and Pedersen 

Commitments (PC). EC cryptography techniques are also used to generate and verify the 

signature of transaction encompassing the transfer of KAT tokens (see section 1.4) from or to 

accounts locked by the private keys of Catalyst users. Finally, EC cryptography techniques are 

used for the generation and verification of range proof that any number (i.e. an amount of 

tokens) hidden in a PC can be provably shown to lie within a range of acceptable values.  

There exist many types of EC, some of which are part of NIST curves [4]. While the NIST 

curves, such as the secp256r1 curve, are advertised as being chosen verifiably at random, there 

is little explanation for the seeds used to generate these. By contrast, the process used to pick 

non-NIST curves, such as the twisted Edwards Curve25519 used in Monero project [5], is fully 

documented and rigid enough that independent verifications can and have been done. This is 

widely seen as a security advantage, since it prevents the generating party from maliciously 

manipulating the curve parameters [6]. Moreover, EC such as Curve25519 are designed to 

facilitate the production of high-performance constant-time implementations.  

On the Catalyst ledger we opt for the twisted Edwards Curve25519 [7], that is a birational 

equivalent of the Montgomery curve Curve25519. It is defined over the prime field Fp where p 

= 2255 − 19, by the following equation:  

  

The order of Curve25519 can be expressed as N = 2cl with c a positive integer and l a 253-bit 

prime number. N is a 76-digit number equal to:  

N = 23 · 7237005577332262213973186563042994240857116359379907606001950938285454250989  

Elements in Fp are 255-bit integers and can thus be represented in 32 bytes with the most 

significant bit set to 0. An EC point on the twisted Edwards Curve25519 would therefore be 

represented with 64 bytes. But given point compression techniques described in [5], it is 

possible to reduce an EC point to a 32-byte data where 255 bits represents the x coordinate of 

the point, and the last bit indicates the y coordinate.  

In general terms, an EC of the form y2 = x3 +ax+b is defined over a prime field Fp where p 

determines the maximum values of x and y, the two coordinates of an elliptic curve point. The 

elliptic curve has a cyclic group of n points. A EC generator, G for instance, is an EC point itself 

generating a cyclic subgroup of order lG ≤ n. This subgroup is composed of the set of points: 

{0G,1G,2G,...,(lG − 1)G} with 0G = lGG known as the point at infinity. This subgroup is defined by 

the relation xG = (x mod lG)G. The order of the subgroup lG is a divisor of n. For instance, if n = 

100, then lG can take a value in {2,5,10,25,50}. Note that n cannot be a prime number. If lG = n, 

the subgroup of G includes all the points of the EC.  
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1.2  Choice of Hashing Algorithm  
Hashing generally refers to algorithms used to obfuscate data by generating a summary of the 

data, or hash, in such a way that the original data cannot be restored using the hash, i.e. a 

hashing function is a one-way function. The hash can be used to prove knowledge or ownership 

of the original data. A hashing function generates a pseudo-random string of fixed length from 

a data of arbitrary length. The hashing algorithm is said to be collision-resistant when the 

probability to generate the same hash from two different data is negligible. Furthermore, a 

hashing algorithm has the property that two similar data will lead to very different hashes, that 

is to say a collection of hashes does not allow an entity unaware of the original data to acquire 

knowledge about the data.  

The hashing algorithm used on Catalyst ledger is Blake2b-256 (or simply Blake2b) which 

produces a 256-bits string and is known to be amongst the fastest hashing algorithms and 

particularly suitable for mobile applications [8]. Throughout the document, the hashing 

function is referenced by the symbol H. 

1.3  Zero-Knowledge Proofs  

Confidential transactions on blockchains were introduced by G. Maxwell [9] as new data 

structures to enable the transfer of tokens between digital addresses in such a way that the 

amount or number of tokens exchanged is hidden, offering more privacy to the users. The 

amount is obfuscated by using Pedersen commitment (PC). A Pedersen commitment is of the 

form C = vH + bG where G and H are two distinct generators of the EC, v is a number of tokens 

hidden in C and b is the PC mask, sometimes referred to as a blinding factor. b and v are both 

integers.  

In this paper, a PC is used to obfuscate the amount of KAT tokens associated to an account 

stored on the Catalyst ledger. The PC has the following form: Ci = viH +biG and obfuscates the 

balance of the account in KAT tokens, represented by an integer vi ∈ ZK (where K is the maximum 

number of tokens defined in Catalyst system). Said balance is hidden using a blinding factor

). The generators G and H are two different base points of the same subgroup of 

EC points such that the discrete logarithm is preserved, i.e. the x value in the relation xG = H (or 

xH = G) is unknown. As a result, the two EC points viH and biG are added to form a valid EC point, 

e.g the Pedersen Commitment. Using compression techniques, an EC point on Curve25519 

amounts to 32 bytes, leading to a Pedersen Commitment (PC) size of 32 bytes.  

Given the cyclical property of an EC, a PC of the form C = vH + bG can be rewritten as: C = (v  

mod lH)H + (b mod lG)G  

Where lG is the order of the generator G (or number of points on the elliptic curve defined 

over G) and lH is the order of generator H.  

The use of PCs provides a cryptographically secure method to mask the number of tokens 

exchanged in a transaction. A token transfer may be represented by two elements in a 
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transaction: one representing the account debited of tokens and one representing the account 

crediting of tokens. Each element may comprise a PC to obfuscate the token transfer. The sum 

of the PCs in a transaction can be used to prove that the sum of the amounts spent and received 

in a transaction amount to 0 KAT tokens, i.e. the transaction does not create or destroy tokens.  

Assuming a transaction with n PCs, the sum of these must verify:  where  

.  

On the Catalyst ledger we take advantage of the cyclical nature of elliptic curve and allow for 

the use of positive as well as negative numbers of tokens to be contained within a PC. In truth 

these negative numbers are actually positive and very large numbers. For example a user 

sending 5 KATs would create a commitment including a negative amount −5 as follows: C = (lH 

− 5 mod lH)H + (b mod lG)G. The use of positive and negative numbers in digital transactions is 

rather uncommon yet advantageous. Indeed, it offers an improved anonymity solution to users 

as the nature of a transfer embedded in a commitment (whether it consists in spending or 

receiving tokens) needs not be specified in a transaction. The group of commitments in a 

transaction can simply be added together in order to verify no new tokens are created (or 

tokens destroyed) in the transaction.  

Since 0H = lHH, it is in practise be possible to generate a PC with a very large number of 

tokens, with the malicious aim to create new tokens while producing a valid PC sum. In order 

to circumvent this problem, we use range proofs. Range proofs enable a user to prove that an 

amount lies within a specific range of values without revealing the amount. The range of values 

chosen for a range proof is [0,K) where K represents an upper limit on the number of tokens ( 

  

Confidential transactions have a cumbersome feature with respect to non-confidential ones, 

that is a clear increase of a transaction size as well as of the generation and verification times. 

The range proof associated to a transaction PC is the primary cause for the transaction size 

increase. This leads to a lack of scalability and a significant increase in transaction fees 

compared to non-confidential transactions. The Bulletproof protocol is a zero-knowledge proof 

protocol [10] proposing an improved inner product argument algorithm which results in a 

greatly reduced size of the range proof associated to a PC. While traditional range proof sizes 

are typically linear in the bit-length n of the range proof (where M = 2n), Bulletproof provides a 

significant saving by creating range proofs where only [2 log2(n)+9] group and field elements 

are required. Moreover, Bulletproof protocol allows to generate aggregated range proofs with a 

size that grows logarithmically in the number of commitments, offering a faster batch 

verification time. The range proof generated for confidential transactions on Catalyst ledger are 

produced using the Bulletproof protocol.  

1.4  Catalyst Tokens  
The Catalyst native network token is named KAT (in reference to Katal, the unit of a catalyst 

activity). A KAT provides the network with the functionality to pay for network services or 

receive value for the provision of network services. It derives its intrinsic value from the 
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development and use of the network and hence provides utility for both work undertaken by 

producer nodes and use of the network.  

KAT is a utility token and as such aims at providing Catalyst network users with access to 

services supported by decentralised applications (dApps) and Smart Contracts. The tokens are 

not designed as an investment although the value of the tokens can vary according to the 

demands for services on the network. These tokens are considered a medium of exchange as 

these can be used to facilitate the sale, purchase or trade of services on the network. Such trades 

take place via the use of transactions created by users and broadcast on the network.  

The transfer of KAT tokens between user accounts are embedded in transactions. The 

transactions are processed by producer nodes on the network (as discussed in section 2.1) 

which are tasked with verifying said transactions and using these to produce a valid update to 

the balance of these accounts stored on the distributed ledger. The ledger database needs to be 

frequently and securely updated to account for these token transfers. A healthy network thus 

relies on a robust mechanism to manage the ledger database in a decentralised manner. Catalyst 

consensus-based protocol (described in section 5.2) is implemented to incentivise users on the 

network to contribute to the ledger database management, offering them tokens as reward for 

their work. This reward typically comprises two components: a) tokens paid by the users 

issuing transactions and directly debited from their accounts, in the form of transaction fees; b) 

new tokens injected (or released) into the system. The token supply model adopted for Catalyst 

base currency (KAT tokens) is a dynamically adjusted inflation model: the number of tokens 

injected into the system (annually) will be a fraction of the total amount of circulating tokens, 

adjusted to ensure a healthy and growing network. The economic considerations defining the 

token supply model of KAT tokens are beyond the scope of this document.  
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Chapter 2  

Peer-to-Peer Catalyst Network  
Peer-to-peer communication allows messages (including but not limited to transactions) to be 

propagated across a network. Peer-to-peer networks rely upon information to be passed 

between nodes in an efficient and orderly manner.  

The protocol used to propagate messages needs to be such that the large majority of nodes 

receive accurate messages in a timely manner. Catalyst implements a gossip protocol to 

propagate messages amongst peers. Gossip protocols, also known as epidemic protocols, are 

named as such because of how they spread information. Each node propagates a message to a 

number of its connected peers, randomly chosen amongst nodes in the network. As nodes 

receive the message, they propagate it to their peers. This allows the message to spread rapidly 

with a high level of coverage.  

Catalyst implements a peer identification protocol. Each node that joins the network must 

have a unique peer identifier that describes the node’s identity. This allows users to track their 

connected peers as well as associate a reputation to each node, to track badly performing nodes.  

The peer identification and gossip protocols are thoroughly documented in a technical paper 

currently under writing by the Catalyst engineer team. The following describes the different 

roles and responsibilities assumed by nodes on Catalyst Network.  

2.1  Peer Role Types  
Peers on the Catalyst network can assume a variety of roles. These include:  

• User node - The default state of all nodes on the network. The role of a user node is to 

receive transactions, check the validity of transactions and when valid, forward these to 

their peers. User nodes can also generate transactions and observe the network. However, 

they are not entitled nor required to perform any other work on the network.  

• Reservist node - A node that has signalled its intent to perform work for the network and 

provided proofs of its available computing resource dedicated to the network.  

• Worker node - A node that has been granted a worker pass for a finite period.  

• Producer node - A worker node that has been selected to perform work for a particular 

ledger cycle. A producer node will be rewarded for performing good quality work by 

receiving KAT tokens.  
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Figure 2.1: Illustration of the different roles assumed by nodes on Catalyst Network.  

• Storage node - A node able to sell some of its spare storage to allow other users to store 

their data in a decentralised manner.  

All nodes on the network will receive transactions, validate and forward these transactions 

to other peers that they are connected to. This is to allow efficient propagation of transactions 

across the network.  

Reservist nodes, upon registering to perform work on the network, are placed at the back of 

a node queue (or worker queue) from which they must wait to be given a worker pass. This pass 

grants them the right to become a worker node and a member of the worker pool for a finite 

period. During this period, several ledger cycles happen, and the worker node has a chance of 

being randomly selected to become a producer node for any ledger cycle. The producer nodes 

are the network peers that work together and follow a consensus-based protocol to build the 

ledger state updates, as described in section 5.2.  

2.2  Nodes Registration  

2.2.1  Producer nodes selection  

The selection of producers among the worker pool can be achieved for each ledger cycle using 

a randomised approach. Since a producer generates a ledger state update for a ledger cycle 

based on transactions collected during the previous ledger cycle(s), such assignment to a node 

should be revealed at least one cycle ahead. In fact, we use a method that reveals at the 

beginning of a ledger cycle Cn the list of nodes selected to be producers for a ledger cycle Cn+1 

using information available one cycle ahead (Cn−1).  

At the beginning of a ledger cycle Cn, at time t = tn,0, a pseudo-random number rn+1 is drawn 

using the Merkel tree root of the ledger state update produced during the cycle Cn−1, as seed to 

the pseudo-random number generator. The random number rn+1 is then used to define the list 

of workers selected to become producers for the next cycle Cn+1 in the following way: for each 

worker node identifier Idi the quantity ui = Idi ⊕ rn+1 is defined, where ⊕ is an XOR function (for 

binary-based modulus addition). The list of new identifiers {ui}i=1,...,N (N is the total number of 

nodes in the worker pool) is sorted in ascending order and the first P identifiers in that list are 

the identifiers of the nodes selected to be producers for the next cycle Cn+1. 
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2.2.2  Worker nodes selection  

In a large network, it can be anticipated that a large number of nodes have available resources 

to be used to manage the ledger database and try to join the worker pool (which translates as  

a high demand for work). The size of the worker pool must however be determined by security 

as well as economic factors. Indeed, it must be profitable for a node to join the worker pool. Said 

otherwise, the average number of tokens earned by a producer over a period should at the very 

least cover its operational cost. As there might be more nodes willing to work than required for 

the worker pool, nodes may join a secondary pool, called worker queue, and wait to be called to 

join the worker pool. For these nodes to join the worker pool, there must be a mechanism that 

limits the period during which a node can persist in the worker pool. The approach considered 

is to grant nodes joining the worker pool a worker pass which is valid for a limited period.  

The list of identifiers of nodes in the worker pool is maintained in a hash table, DHTw, 

distributed across the network. Such table also stores the time of issuance of the node worker 

pass. At the end of a ledger cycle, nodes in the network will be able to verify which worker passes 

are no longer valid and have expired. Nodes on the network can update the table, freeing some 

slots that can be occupied by the nodes sitting in the worker queue.  

By providing proof of their available resource to the network [12][13], nodes can freely apply 

to become workers. These nodes join the worker queue before joining the worker pool. Nodes 

on the network store such proof alongside the node identifier in a secondary distributed hash 

table, DHTq. As worker nodes leave the worker pool, some nodes listed in DHTq join the worker 

pool. A logic described below can be implemented such that nodes with identifiers at the top of 

the list of nodes in DHTq are the first ones to access the worker pool and be listed in DHTw. Such 

an approach could however be seen as potentially accommodating Sybil-identity attacks [14], 

nevertheless expensive, if an entity controls a large number nodes at the top of the worker 

queue (at least equal to half the worker pool size N/2) and frequently adds many nodes to the 

worker queue such that the size of the worker queue is large enough to create an impression of 

a large demand for work. We therefore adapt our approach to define the dynamic of nodes 

leaving the worker queue and joining the worker pool that both prevents Sybil attack and 

incentivise nodes to join the worker queue during periods of low demand for work. We propose 

a method to sort out the nodes listed in the worker queue.  

A score (or ranking) is given to a node when it joins the worker queue. The nodes in the 

worker queue are then ordered based on their score in descending order, i.e. the nodes with the 

lowest score are at the top of the queue and are the first ones to leave the worker queue and be 

selected to join the worker pool when some slots are freed in the worker pool. The method to 

assign a score to a node joining the worker queue is not purely chronological based. It depends 

on the volume of nodes trying to join the worker queue during an allotted time period ∆t. 

Assuming St nodes apply to join the worker queue during a window of time [t,t+∆t]. The St nodes 

first register to a temporary queue, represented by a third hash table DHTs. At the end of the 

time window, a fixed and limited number of nodes listed in DHTs, z ≤ St, are randomly selected. 

z is equal to the number of nodes who left the worker pool during the previous time window [t 

− ∆t,t]. These z nodes are given a score drawn from a normal distribution centred around Rq, 

which is a predetermined threshold of the worker queue length. This means that some selected 
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nodes may obtain a score lower than nodes currently at the bottom of the worker queue. The 

rest of the nodes in the temporary queue (St − z) are given a score drawn from a normal 

distribution centred around Rl = Rq + s, where s is a shift proportional to the volume of nodes in 

DHTs. Figure 2.2 summarises the process of score allocation for nodes joining the worker queue.  
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Figure 2.2: Illustration of the process followed by Catalyst network to add nodes to the worker queue. 
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Chapter 3  

Catalyst Distributed Ledger  
The Catalyst database is designed to ensure Catalyst system can run on low resource devices 

and fit the different needs of the network users without compromising on data integrity or 

accessibility.  

3.1  Ledger Database Architecture  
Catalyst has a multi-level data architecture, as illustrated in Figure 3.1. 

 

  

Figure 3.1: Illustration of Catalyst database architecture.  

At the top level lies the current state of the ledger, i.e. the database containing the current 

balance of digital accounts recorded on the ledger. It represents a snapshot of the ledger state, 

at the present time. It is periodically updated. At the end of a ledger cycle, that lasts for a fixed 

period between 30 seconds and 1 minute, a ledger state update is generated by a pool of nodes 

selected to manage the ledger database, the producers, and distributed to the network users 

who can then update their local copy of the ledger state. The process followed by producers to 

generate a ledger update, i.e. the consensus-based protocol, is described in section 5.2.  

The middle level comprises the recent ledger state updates, that is a set of the last recent 

ledger state updates accepted by producers and broadcast across the network. Historical data, 

or old ledger state updates, represent the bottom level. Both middle and bottom levels are 

maintained by the Catalyst Distributed File System (DFS) module. The top and middle levels sit 

on every node on the network and are thus immediately accessible. On the other hand, the 

bottom level is maintained by some but not necessarily all nodes in the network. Long term 

data is thus available with a short delay which constitutes a small trade-off for a compact ledger 

database maintained by every node.  
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Figure 3.1 also shows the smart contracts and dApps stored on a database unit separate 

from the account balances and communicate with DFS for the access, production and storage 

of files. Technical specificities around smart contracts and dApps are discussed in a paper soon 

to be released.  

3.2  Accounts on Catalyst  
Different types of accounts are stored on Catalyst ledger. Namely:  

• Non-confidential user-based accounts, with a balance in KAT tokens that is updated via 

the validation of non-confidential transactions. The account balance is visible to all.  

• Confidential user-based accounts, with a balance in KAT tokens that is updated through 

the validation of confidential transactions. The account balance is hidden, only known 

to the account holder(s).  

• Smart contract-based accounts. A smart contract-based account has an associated code 

that can be triggered by transactions or messages generated by other codes.  

An account comprises the following components:  

• An address component: a 21-byte address Ai, which is derived from a public/private key 

pair {Qi,ki} (where Qi = kiG, G is an EC generator) using a collision-resistant hash function 

(H): Ai = H(Qi). The last 20 bytes of the hash are used to create the address. A 1-byte 

prefix is added to distinguish between the different types of accounts, allowing users to 

hold accounts of different types yet derived from the same public key.  

• An amount component: when non-confidential, the amount is a 8-byte number vi ∈ ZK. 

This represents the account Ai balance in KAT tokens (with K a threshold on the number 

of tokens). When confidential, the amount component is a 32-byte Pedersen 

Commitment [9] Ci = viH +biG that hides the balance vi of the account using a blinding 

factor 

  

• A data component: reserved to smart contract-based accounts and used to store data (or 

a reference to data stored on DFS) that amounts to a maximum of 64 bytes.  

As such, Catalyst ledger state is naturally split into partitions where each partition stores 

accounts of a given type.  

3.3  CLS Structure  
The ledger state thus encompasses different partitions, each of which keeps the balance of 

accounts of a specific type up to date. The current ledger state (CLS) lists the accounts balance 

at the present time, allowing anyone to access (and comprehend in the case of non-confidential 

accounts) the available balance in tokens of an account.  
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When users on the network wish to transfer tokens to other users, they issue transactions 

that are broadcast to the network. The structure of these transactions is discussed in section 

4.2. The transactions are collected by nodes assigned to the management of the ledger database 

(as detailed in section 2.1) and used to generate a ledger state update. A ledger state update is 

a cryptographically secure structured data object that allow users to update their local copy of 

the ledger. The production of valid ledger state updates in a trust-less environment is discussed 

in section 5.2.  

The ledger state update consists of a summary of the token transfers embedded in the 

transactions broadcast by the network users. Transactions broadcast during a ledger cycle are 

collected by nodes who then use these to generate a ledger state update during the next ledger 

cycle. In layman’s terms, the ledger state update can be viewed as a structured database with a 

series of row, each row having two components: a public key referring to the address of an 

account stored on the ledger and an amount (positive or negative) that represents a token 

transfer.  

Let’s assume for instance that Alice wants to transfer 5 KAT tokens to Bob. The transfer form 

Alice’s account to Bob’s account would be represented by a transaction with two entries. The 

ledger state update including this transaction would comprise two rows: one row with Alice’s 

account address (or the public key used to derive the account address) and a negative amount 

−5 KAT and one row with Bob’s address and a positive amount 5 KAT (transaction fees, 

discussed in section 4.2, are ignored here). Once a user receives a valid ledger state update, the 

former can use the latter to update their local copy of the ledger: Alice account is debited of 5 

tokens while Bob’s account is credited of 5 tokens. Note that the ledger state update produced 

for one ledger cycle only includes balance changes of accounts called in the transactions 

broadcast on the network during the precedent ledger cycle. This allows for a compact ledger 

state update as there may be many more accounts stored on the ledger that are not used during 

a ledger cycle.  

Transactions in the context of DLT refer to data objects created and cryptographically signed 

by users and propagated as messages on the peer-to-peer network. A transaction a la Bitcoin 

typically includes:  

• a set of inputs where each input comprises the details of the account or digital address 

being debited, the (positive) amount associated to that address and the signature of the 

account owner, proving the legitimacy or ownership of the tokens as well as the valid 

balance of the debited account.  

• a set of outputs where each output comprises the details of the account being credited. 

Rather than a signature, a locking program is attached to the output, that effectively locks 

the tokens sent to this output using the public key of the recipient (the user holding the 

account being credited).  
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A digital signature associated to a transaction input is a mathematical scheme that allows 

the owner of the associated private key to prove that they have authorised the spending of the 

funds locked in the output of a transaction stored on the ledger. A valid signature further 

guarantees the non-repudiation of the message (the sender cannot deny having sent the 

message) and the message integrity (the latter has not and cannot be tampered with).  

On the Bitcoin blockchain, valid blocks of transactions get appended to the blockchain in 

such a way that any new block is cryptographically sealed and linked to the last block appended 

to the blockchain. A block contains a set of transactions that transfer digital assets from a set of 

digital addresses to another set, as well as an extra transaction, called a coinbase transaction, 

that rewards the miner who successfully produced that block with new digital coins. Each 

transaction input contained in a valid block (except the coinbase transaction) refers to the 

output of a transaction stored on a previous block (a.k.a an unspent transaction output – UTXO). 

It can be viewed as the second state of that output. First, the output is unspent, locked and 

stored on a valid block. Secondly, the output is used as input in a new transaction and unlocked 

by the owner of the unlocking key. Eventually, an old block in the blockchain will solely contain 

spent transaction outputs usable as inputs in transactions stored in later blocks. As such the old 

block becomes obsolete as it no longer holds any spendable tokens.  

The Catalyst ledger operates differently in the sense that it does not store UTXOs. The ledger 

state comprises digital accounts of which the balance changes over time as transactions 

debiting or crediting these accounts are validated on Catalyst network. As detailed in sections 

4.2 and 5.2, the removal of UTXOs is made possible via the combination of a novel consensus-

based protocol and a new transaction structure such that any token transfer embedded in a 

transaction (whether spending or receiving tokens) is signed and thus authorised by the 

relevant parties involved in said transfer. User nodes need not access old ledger state updates 

to be able to transfer tokens from their account stored on Catalyst ledger. They only need a local 

copy of the current ledger state.  

Once a ledger state update is generated by a pool of producer nodes, it is stored on DFS and 

can be accessed by any node to update their local copy of the current ledger state. DFS is built 

upon the IPFS protocol [15] and is used to store files as well as historical ledger state updates. 

This removes the burden on user nodes to maintain the full history of the ledger database while 

allowing for fast retrieval of files as well as old ledger state updates. DFS is maintained by all 

nodes on the network. However, DFS is made of a multitude of compartments and each node 

needn’t hold all compartments. The design of a ledger compartment dedicated to the storage of 

files and historical ledger state updates is an approach taken to prevent the bloating of the 

ledger and allow the network to support services at scale. Indeed, this approach allows Catalyst 

ledger to remain both lean and cryptographically secure. 
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Chapter 4 

Catalyst Transactions  
Transactions are the integral element to any blockchain or DLT. These are messages broadcast 

by users on the network that encompass the transfer of tokens and data to and from digital 

accounts stored on the ledger. Catalyst network strives to offer users a variety of services 

accessible on the network and as such supports a plurality of transaction types. This includes 

the choice of opting for hidden or visible accounts via the support of both non-confidential and 

confidential transactions, thus offering different levels of anonymity to the network users. This 

section describes how different transaction structures and account types are supported on 

Catalyst and details the processes behind the generation and verification of transaction 

signatures.  

4.1  Transaction Types  
On the Catalyst ledger, a transaction is a message or data object used to transfer KAT tokens or 

data from and to a set of digital accounts. Such a transaction can include different types of 

transfer depending on the nature of the accounts embedded in said transaction. As mentioned 

in section 3.2, Catalyst supports the transfer of confidential and non-confidential assets. 

Catalyst also supports the transfer of assets and data linked to smart contracts and data storage. 

These different types of transfer are defined by specific transaction components and a 

transaction type allow any node on the network to differentiate between the nature of 

exchanges embedded in different transactions. In this section we give an overview of the 

transaction structure and the different components considered for each type of token and data 

exchange.  

4.2  Transaction Structure  
In traditional blockchains (such as Bitcoin) a transaction is composed of a set of inputs and 

outputs. An input refers to the output of a transaction stored on a valid block of the blockchain, 

effectively spending that output (also referred as UTXO). In broad terms, an input thus spends 

tokens, while an output receives some. The output is locked and can later be spent in an input 

of a future transaction. On the Catalyst ledger, we opt for a new terminology, defining as 

transaction entry a transaction component that spends or receives tokens. A transaction object 

on Catalyst is made of the following components:  

• A transaction type specifying the type of exchange embedded in the transaction entries 

(non-confidential or confidential asset transfer, data storage request and retrieve, smart 

contracts-related token and/or data transfer).  

• A set of n transaction entries {Ei}i=1,..,n. Transaction entries are specific to the nature of the 

token and data exchange. These are described in 4.3.  
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• An aggregated signature T proving ownership of the set of accounts called in the 

transaction entries.  

• A locking time corresponding to a point in time after which the transaction can be 

processed by a worker pool.  

• The transaction fees paid by the transaction participants.  

• A timestamp corresponding to the point in time where the transaction is complete and 

ready to be broadcast on the network.  

• A data field that can contain up to 60 bytes of data transferred in data storage or smart 

contract-related transactions.  

Any valid transaction must contain a type, a timestamp and locking time (when the latter is 

set to 0 there is no waiting period prior to processing a token exchange embedded in the 

transaction), a list of transaction entries and an associated signature. Any other field can be 

included to the transaction, depending on the nature of the token exchange.  

4.3  Transaction Entries  
Transaction entries are used on the Catalyst ledger to represent the transfer of tokens into or 

out of the account referenced in the entries. This generally takes the form of debit or credit of 

an account. We use the term entry to replace the traditional input and output, as on Catalyst 

there is no differentiation as to how the debit or credit of an account is formed. Whether 

spending or receiving tokens, a user must sign their transaction entry and a transaction is 

complete if and only if all transaction entries have been signed.  

A transaction entry typically consists of two components:  

• A public key, from which the address of an account stored on the ledger is derived.  

• An amount component that can be a number (when the transaction is non-confidential) 

or a Pedersen commitment (when the transaction is confidential) and represents the 

number of tokens spent from or transferred to the address associated with the public key.  

On Catalyst, the amount or number of tokens included in a transaction entry can be positive 

(when receiving) or negative (when spending). This choice allows for a) keeping a simple 

transaction entry structure (there is no need for an extra field to specify the type of transfer 

embedded in an entry) and b), in the case of confidential asset transfer, an improved anonymity 

as an observer will be unable to differentiate between a sender and a recipient in a token 

transfer.  

The public key Qi in a transaction entry Ei is always a 32-byte element from which one address 

Ai stored on the ledger can be derived.  

The amount component of an entry however differs depending on the nature of the token 

exchange:  
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• For a non-confidential asset transfer, it is a 8-byte (positive or negative) number vit that 

represents the number of tokens spent from or transferred to the address Ai, 

communicated in clear text.  

• For a confidential asset transfer, it is made of two elements:  

– A 32-byte Pedersen commitment Cit that represents the commitment of tokens spent 

from or transferred to the address Ai  

– A range proof Πi(Ci0) (as discussed in section 1.3) that proves that the token balance 

of Ai remains within an acceptable range of value (typically greater than 0 and 

smaller than a threshold M of number of tokens) after the transaction has taken 

place.  

The construction of these elements is discussed below.  

The balance vi of the account Ai is initially represented on the ledger by the PC:  

  Ci = (vi mod lH)H + (bi mod lG)G  (4.1) Where bi is a blinding factor chosen by the 

account holder. Let’s assume that the latter wishes to exchange a number ai of tokens. To 

obfuscate the number of tokens transferred in a transaction entry Ei, the account holder creates 

a PC: 

    (4.2)  

Where vit = ai if receiving the tokens (ai > 0) and vit = lH + ai if spending the tokens (ai < 0). lH 

is the order of the subgroup of EC points generated by H and is much greater than K, the 

maximum number of KAT tokens defined in Catalyst system. As a result, it would not be possible 

to construct a valid range proof for vit when ai < 0. The account holder can however create a 

second PC as follows:  

    (4.3)  

Which represents the commitment of the account balance after the transaction has taken place:  

  

If ai < 0, vi0H = [vi + (lH + ai)mod lH]H = [vi + ai]H. It is only possible to generate a valid range 

proof associated to Ci0 if vi > ai. Note that vi is necessarily smaller than M as the balance of the 

account would have been determined by a previous transaction entry, itself including a range 

proof ensuring that vi ∈ [0,K). As discussed in section 1.3, a range proof generated using the 

bulletproof protocol amounts to 672 Bytes.  

Table 4.1 summarises the different components of a transaction and their respective size for 

the two types of transfer aforementioned.  



29 
 

Each entry in a transaction needs to be signed to authorise the transfer of tokens from or to 

the address included in said entry. This can be achieved through the use of an aggregated 

signature scheme as described in section 4.4.  

Another type of transaction entry is considered on Catalyst, that is a stand-alone entry. It is 

not included in a transaction but is added to the ledger state update generated by the producers 

during the ledger cycle and includes the reward allocated to a specific producer for its 

Transaction message  Size  

Transaction Type (account type & asset class)  1 Byte  

Entries (n > 1)  non-confidential entry  32-byte public key  
n · 40 Bytes  

8-byte amount  

or confidential entry  32-byte public key  n · 736 Bytes  

32-byte PC  

672-byte range proof  

Transaction fees  8 Bytes  

Locking Time  4 Bytes  

Aggregated Signature  64 Bytes  

Timestamp  4 Bytes  
Table 4.1: Structure of confidential and non-confidential transactions on Catalyst and size per transaction component.  

contribution in producing a valid update of the ledger state. Such entry, called ledger 

compensation entry (or simply compensation entry), is very similar to a non-confidential entry. 

It includes an 8-byte amount, that is however always positive, and a 32-byte public key from 

which the address of an account stored on the ledger is derived. However, unlike transaction 

entry, a compensation entry need not be signed to authorise the transfer of tokens to the 

account address specified in said entry.  

4.4  Transaction Signature  
On the Catalyst ledger, all the transaction entries are signed to authorise the transfer of tokens 

which means that all the participants in the transaction need to sign their respective entry for 

a transaction to be considered complete and ready to be broadcast on the network. When 

signing an entry Ei a participant needs to prove ownership of the account Ai referred in the entry. 

Said otherwise, the user needs to prove knowledge of the private key ki paired to the public key 

Qi from which the account address Ai is derived. A verifier can then verify the validity of the 

signature given the public key Qi specified in an entry Ei.  

Signatures for transactions on the Catalyst network are formed in a highly similar way 

regardless of whether the asset transfer embedded in said transaction is confidential or 
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nonconfidential. The signature scheme describes in this section therefore applies to both 

transaction types unless explicitly stated.  

In blockchains such as Bitcoin and Ethereum, transaction inputs are signed using ECDSA 

scheme, where the public key is recovered from the signature and used to retrieve the account 

or UTXO address, thus ensuring that the rightful owner of the tokens is authorised to spend 

these. The use of a second temporary, often called ephemeral, public/private key pair in the 

signature adds a layer of protection against malicious attempt to retrieve the private key of a 

user when signing multiple transactions spending tokens from the same address.  

Public key recovery is however incompatible with batch validation, i.e. it is not possible to 

recover a set of public keys from an aggregated signature on multiple transaction inputs. As a 

result, the choice of ECDSA-based scheme for Catalyst transactions would not be optimal as a 

transaction should contain a minimum of two entries. A Schnorr-based signature scheme is 

preferred to enable user to jointly produce a signature using their private keys. A solution 

recently proposed by Y. Seurin et al [16] also accounts for protection against key-rogue attacks, 

preventing key malleability to create validate signatures on transaction without knowing the 

users’ private key. We propose a Schnorr-based signature scheme inspired from this recently 

published work.  

We define the transaction core message m as a set of n entries {Ei}i=1,..,n and additional 

information X mentioned in the previous section (see table 4.1), excluding the transaction 

timestamp and signature: 

m = {Ei}i=1,..,n + X  

The participant Ui responsible for Ei (holder of the account Ai) creates the following 

challenge:  

  ei = H(m || Q˜)H(L || Qi)  (4.4)  

Where:  

• H is a hashing function  

• m is the transaction core message • || denotes the concatenation between strings • Q˜ is 

the aggregated public key such that:  

Q˜ = H(L || Q1) · Q1 + .. + H(L || Qn) · Qn  

• L is the hash of all the public keys used in the transaction expressed as L = H(Q1 || .. || Qn) 

Ui then creates the following partial signature:  

  si = ri + ei · ki  (4.5)  

Where ri is a pseudo-random number chosen by Ui and kept secret.  
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For non-confidential transaction, the partial signature (si, Ri) with Ri = riG, generated by Ui, 

is forwarded to the other transaction participants. Each participant in the transaction Uk (k 6= 

i) can compute: 

  Ri0 = si · G − ei · Qi  (4.6)  

where Qi = ki · G and verify that Ri0 = Ri, proving the validity of the partial signature.  

The last participant to receive the full set of partial signatures builds the transaction 

signature. The transaction signature of a non-confidential transaction is composed of the pair:  

T =( s 1 + .. + s n ,R 1 + .. + R n   |  {s z   } |  {R z   } )  (4.7)  

At the verification phase, a producer can check that the total signature is as follows:  

1. Compute the quantity R0 = s · G − H(m || Q˜) · Q˜ 1  

2. Verify that R0 = R  

If so, the signature T = (s,R) is valid. The signature is composed of a 32-byte integer and a 

32-byte EC point, leading to a compact 64-byte signature for the entire transaction, regardless 

of the number of transaction entries. 

.  
Recall that each entry Ei in a confidential transaction includes a PC obfuscating the amount 

vit defined by: Cit = vitH + btiG. For confidential transaction, Ui generates a partial signature 

using the blinding factor in their PC:  . Using   generates the partial 

signature (si, Ri) and forwards it to the other transaction participants. Each participant in the 

transaction Uk (k 6= i) can compute:  

    (4.8)  

The last participant to receive the full set of partial signatures builds the transaction 

signature. The transaction signature of a confidential transaction is then composed of the pair:  

T =( s 1 + .. + s n ,R 1 + .. + R n  

  |  {s z   } |  {R z   } )  (4.9)  

The verifier can compute:  

  

If R0 = s · G − H(m || Q˜) · Q˜ , the signature T = (s,R) is valid. The validity of T proves a verifier 

that the sum of the commitments in the transaction entries results in a commitment to 0 after 

adding the transaction fees paid by the different participant, thus ensuring that no tokens are 

created or lost in the transaction.  

Once the transaction aggregated signature is valid, the participant in possession of all partial 

signatures can append it to the transaction. The transaction timestamp is defined as the time 

1 
  Indeed, 
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when the transaction is completed by said participant and ready for broadcast across the 

network.  

4.5  Transaction Validity  
Nodes in the network receive and forward transactions to their peers. In order to prevent 

spamming attack over the network, nodes only forward transactions that are considered valid 

against a validity check list. Before forwarding it to its peers, a node verifies the transaction 

against the following list of criteria:  

• The transaction syntax (aforementioned in 4.2) and data structure must be correct.  

• The transaction size in bytes is greater than or equal to 160 Bytes (defined by the 

parameter MIN STD SIZE for non-confidential transaction) or 800 Bytes (defined by the 

parameter MIN CON SIZE for confidential transaction).  

• The transaction size in bytes is less than 1 Mbyte (defined by the parameter MAX STD 

SIZE or MAX CON SIZE depending on the transaction type).  

• The transaction list of entries must have at least two elements, each element must have a 

correct syntax.  

For non-confidential transaction Ei must have a total size of 40-byte and 2 components:  

– A public key Qi with a corresponding account address Ai stored on the ledger where 

the account have a visible balance (8-byte field).  

– An amount vit that once added to the balance vi of the account mapped with the public 

key leaves the account balance positive (vi + vit > 0)  

For confidential transaction Ei must have a total size of 736 bytes and 3 components:  

– A public key Qi with a corresponding account address Ai stored on the ledger where 

the account has a hidden balance (32-byte field).  

– A 32-byte PC Cit  

– A 672-byte range proof must validate against a new PC built out of the sum of Cit and 

the account balance Ci.  

• The transaction fee amount vf is greater than a (positive) minimum fee values MIN TX FEE  

• The relation  = 0 must be verified for non-confidential transaction.  

• The transaction signature must validate against the public key built out of the public keys 

stored in the transaction entries.  

The verification of the range proofs in the transaction is costly in computer resources and is 

therefore only performed by the producers.  
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Chapter 5  

Catalyst Consensus Mechanism  
Proof-of-Work (PoW) and derivate algorithms are commonly used to manage blockchain and 

distributed ledger in a distributed manner. Consensus-based protocols based on such 

algorithms rely on a plurality of nodes, called miners, competing to generate at regular interval 

of time a valid block of transactions to append to the blockchain. Part of the competition 

consists in solving a cryptographic puzzle that ensures the validity of the content of a block.  

However, this competition amongst nodes wastes a tremendous amount of energy as all 

miner nodes expend computational power to solve the same problem, yet only the work 

performed by one node is used to update the blockchain. The energy consumption per year for 

Ethereum and Bitcoin combined is 66.6 TWh per year which is comparable to yearly energy 

consumption of Switzerland (61.6 TWh per year) [17]1. It is clear that this is not sustainable or 

environmentally friendly. Moreover, as the difficulty associated with the cryptographic puzzle 

increases over time, miners are forced to invest in more computer resources to have a chance 

of earning miner rewards. Such consensus protocols have a clear negative environmental 

impact and indicate counteractive economic implications with high risk of mining 

centralisation.  

This chapter presents a new consensus-based protocol that can be applied to a peer-to-peer 

network in order to manage a distributed ledger in a fair and secure manner without wasting 

unnecessary amount of energy.  

5.1  Background  

5.1.1  Motivation  

The consensus algorithm designed by the engineers and researchers at Catalyst rests on the 

principle that every node participating in the network can contribute to the ledger state update 

and should be rewarded accordingly. Indeed, the consensus mechanism was conceived based 

on the observations that:  

• In reality, not every node needs to validate every transaction for a network to be secure 

and a ledger fully decentralised. 

• Collectively across a network of nodes there is significant distributed computer 

resources to securely maintain a ledger. Network performance should as a result improve as 

the network scales up. 

 

 

1 This energy consumption allows approximately 445 million transactions for Bitcoin and Ethereum combined 

per year [18][19], compared to Switzerland where 820 million debit card transactions are processed per year [20] 

for an estimated energy consumption of 0.001358 TWh.  
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The PoW algorithm was introduced to solve the General Byzantine Problem among 

participants in the peer-to-peer network, allowing them to reach consensus without trusting 

one another [21]. In the PoW algorithm or any derivatives, mining nodes collect and validate all 

transactions broadcast to the network and form a block with these new transactions. The 

miners compete to solve a computationally hard problem, the solution of which is used to prove 

that a block is valid and can therefore be appended to the blockchain. The level of difficulty 

attached to the cryptographic problem solved by the miners is set by the network to ensure that 

blocks are produced on a regular time interval (roughly 10 minutes in the case of Bitcoin, and 

approximatively 17s for Ethereum). Under this scenario, one mining node is rewarded for 

producing the correct next block of the blockchain (which in the analogy of Catalyst 

corresponds to the last valid ledger state update). Although the solution to the cryptographic 

puzzle is hard to find, it is very easy to verify which allow for a fast and secure update of the 

blockchain.  

While this approach provides a secure way to maintain a distributed ledger, it leads to a 

tremendous amount of wasted computational and electrical energy with high risk of mining 

centralisation. In the example of Bitcoin, the early blocks were mined by individuals with 

modest computer resource.  

  

  Figure 5.1:  Distribution of the Bitcoin hash rate power over a 24h period, as the 30 of October 2018[22]  

As illustrated in Figure 5.1, the situation is rather different nowadays. Few miners work 

independently (represented as the “unknown” 11.9%) while the remaining join mining pools 

such as Slush Pool (which was the first mining pool created for Bitcoin mining) to share their 

computer resources and the collected rewards, usually against the payment of a fee (2% of the 

mining reward with Slush Pool). Some mining pools are private pool, such as BTC.top. It also 

worth noting that around 80% of the mining pools are located in China [23] where the 

electricity is considerably cheaper than in other parts of the world.  

A popular alternative to the PoW algorithm currently considered by several blockchain 

projects is the Proof-of-Stake algorithm (PoS). This approach addresses the footprint concerns 

from the former by assigning the task of producing the next valid bock to a subset of miners. 

The miner nodes can be selected randomly or based on criteria such as the miner’s wealth 

(stake). The main concern with a PoS-based consensus mechanism remains the risk for 
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centralisation of wealth and subsequently the network management, with the mining work 

inevitably distributed to a few wealthy nodes [24].  

Catalyst consensus mechanism is not based on a competitive process. Instead, the nodes in 

the network collaborate to collectively build the correct update of the ledger state. The 

algorithm used by nodes to produce a valid ledger state update does not require the execution 

of computationally expensive tasks, allowing nodes with limited resources to contribute. At the 

end of a ledger cycle, new tokens are injected into the system and all the nodes that contributed 

to producing the correct ledger state update receive a share of that reward.  

5.1.2  Naming Convention  

Nodes who contribute to maintaining the ledger state are called producers, rather than miners. 

Indeed, producers do not solve a computationally hard problem, but instead validate the 

transactions broadcast to the network and use these to collaboratively build (produce) a ledger 

state update.  

In the following sections we assume that the ledger is composed of one single partition 

comprising a fixed set of accounts. We therefore consider one single worker pool and one subset 

of producer nodes selected per ledger cycle.  

A ledger cycle Cn starts at time t = tn,0 and lasts for a period ∆tcycle, therefore ending at t = tn,0 

+∆tcycle. A set of P producers {Pj}j∈P are selected to build the ledger state update during the ledger 

cycle Cn. Each producer Pj can be identified by its peers as well as the rest of the network via its 

unique identifier Idj (see chapter 2).  

During Cn, the P producers collaborate to create a ledger state update ∆Ln based on the set 

of mn−1 transactions broadcast on the network during the previous ledger cycle Cn−1. To limit 

discrepancies in the set of transactions collected by the different producers and processed 

during Cn a small-time window ∆tfreeze is considered. The mn−1 transactions {Txj}j=1,..,mn−1 are 

actually collected during the period of time [tn−1,0 − ∆tfreeze,tn,0] (tn−1,0 = tn,0 − ∆tcycle) and must have 

a timestamp comprised between tn−1,0 − ∆tfreeze and tn,0 − ∆tfreeze.  

Each producer compiles a ledger state update and interacts with its peers to vote on the 

most popular ledger state update produced by the set of producers. Each producer is thus 

tasked with two responsibilities: compiling a local ledger state update and voting on the correct 

(most popular) ledger state update. Each task entitles the producer to receive part of the reward 

allocated to producers for maintaining the ledger state. The amount of reward individually 

collected depends on the quality of work performed by a producer. During a ledger cycle Cn, two 

lists of producer identifiers are created, Ln(prod) and Ln(vote). The first one lists the identifiers 

of producers who correctly built the ledger state update while the second one lists the 

identifiers of producers who correctly voted on the correct ledger state update built by the 

producers included in the first list.  

The process followed by producer nodes during a ledger cycle is described in phases. The 

first three phases consist in producing the correct ledger state update before its broadcast to 

the entire network. During each phase, a producer Pi generates a quantity αi and broadcasts it 
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to the network, while collecting the αj quantities generated by the producers {Pj}j∈P/i. The final 

phase ensures the ledger state is updated across the network.  

Throughout the different phases of the ledger cycle, the producers exchange quantities that 

are hashes, notably of ledger state updates, (using the Blake2b hashing function) to which they 

append their identifiers. The exchange of hashes allows for fast and efficient communication 

rounds amongst the peers as these are smaller pieces of data than the actual ledger state 

updates.  

5.2  Protocol  
Section 2.2 describes how user nodes register to become worker nodes and can be selected 

from the worker pool to become a producer for a ledger cycle. This section describes the work 

performed by producer nodes in order to maintain the ledger state. The work performed by 

producers in order to generate an approved ledger state update ∆Ln for the ledger cycle Cn starts 

at t = tn,0 and last for a period of time ∆tcycle. At the end of the ledger cycle, nodes in the network 

use ∆Ln to update their local copy of the ledger state. This section describes the different phases 

of a ledger cycle.  

5.2.1  Construction Phase  

During the first phase (a.k.a construction phase) of the ledger cycle Cn, a producer Pj ∀j ∈ P 

creates a local partial ledger state update and exchanges it with its peers.  

The first phase starts at t = tp = tn,0 and lasts for a period ∆tp, therefore ending at tp + ∆tp.  

Local partial ledger state update generation and broadcast  

At t = tp, the producer Pj flushes its mempool from the mn−1 transactions {Txi}i=1,..,mn−1 collected 

during the period of time [tn−1,0 −∆tfreeze,tn,0] and uses these transactions to create a local partial 

ledger state update ∆Ln,j. The production of ∆Ln,j lasts for a period of time [tp,tp +∆tp0] (∆tc0 < ∆tp). 

The producer uses a salt σ, defined using a pseudo-random number generator that takes for 

seed the hash of the previous valid ledger state update ∆Ln−1. The producer also creates a new 

hash tree dn, to store the aggregated signature embedded in each of the mn−1 transactions. Pj 

then follows a series of steps:  

1. For each transaction Txi ∀i ∈ [1,mn−1], Pj verifies that the transaction is valid (see section 

4.5) and if so, extracts the ni transaction entries (described in section 4.3)  

{Eα}α=1,...,ni, included in Txi. The producer also extracts the transaction signature and adds 

it to the hash tree dn. Note that the transactions signature in dn are sorted in alphanumeric 

order, as to ensure that two same sets of transaction signature result in the same hash 

tree.  

2. For each transaction entry Eα, Pj creates a corresponding hash variable:  

Oα = H[Eα || σ]  
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Each pair (Eα,Oα) is added to a list LsE. Steps (1) and (2) are repeated until all transactions 

have been processed.  

3. Pj then creates a new list LfE using the transaction entries listed in LsE  

(assuming all transactions are valid) such that the transaction entries in LfE = {Eβ}β=1,...,M 

are sorted following a lexicographical order based on their associated hash variable: O1 < 

O2 < ... < Oβ < ... < OM. This approach blurs the links between the token flows embedded in 

the transactions for a better anonymity of the users involved in said transactions.  

4. Pj also extracts the transaction fees vif paid in each transaction Txi and creates the 

following sum:  

  

5. Pj computes a local partial ledger state update as the transaction’s entries list  

concatenated with the hash tree of the transactions signature dn:  

∆Ln,j = LfE || dn  

The producer then computes a quantity (or producer quantity) hj as follows:  

hj ∆j || Id j  (5.1)   

where h∆j is the hash value of the partial candidate ledger state update compiled by Pj 

(also referred as the producer first hash value):  

h∆j = H(∆Ln,j)  

hj includes the producer unique identifier Idj (described in chapter 2), used to verify that 

Pj is a producer node selected for the ledger cycle and later evaluate the quality of work 

performed by Pj.  

= h 
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Figure 5.2: Flowchart illustrated the steps followed by a producer Pj node during a period of time ∆tp leading to 
the broadcast of the producer quantity hj.  

6. At t ≤ tp + ∆tp0, Pj broadcasts hj to the other producers in the network. Figure 5.2 describes 

the process followed by Pj to produce and broadcast hj.  

Partial ledger state update collection  

During the first ledger cycle phase, Pj collects other {hk}k∈P/j producer quantities generated by 

its producer peers {Pk}k∈P/j in its cache.  

At the end of the construction phase (t = tp + ∆tp), Cj first hash values are stored in Pj’s cache 

(including the first hash value producer by Pj). Given the set of P producers selected for the 

ledger cycle Cn, the producer Pj collects at most P − 1 producer quantities (e.g Cj = P) with each 

quantity made of a first hash value and a unique identifier. In an ideal world, two producers Pj 

and Pk would use the same set of transactions and as a result compute the same partial ledger 

state update, leading to ∆Ln,j = ∆Ln,k. In practice, a producer may not collect exactly P first hash 

values during ∆tp (e.g Cj ≤ P) and may not process the exact same set of transactions as its peers. 

The following steps describe how each producer can verify that a partial ledger state update 

has been generated by a majority of producers and generate the reward allocated to that 

majority of producers.  

5.2.2  Campaigning Phase  

During the second phase (a.k.a campaigning phase) of a ledger cycle, a producer Pj designates 

a candidate for the most popular partial ledger state update. At the end of the process, 

producers forward their proposed candidate to their peers.  

The second phase starts at t = tc where tc = tp + ∆tp and lasts for a period ∆tc, therefore ending 

at tc + ∆tc.  
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Local candidate generation and broadcast  

Using the Cj first hash values stored in its cache, Pj follows a series of steps during a period of 

time ∆tc0 (∆tc0 < ∆tc):  

1. Pj verifies that the same first hash value           is embedded in a majority Cmaj of producer 

quantities, where                                                                                 and Cmaj = count[(h∆k =  

                                                      . The threshold, Cthreshold, to decide if a majority of producers agrees  

on the same partial ledger state update, should be strictly greater than 50%, due to statistical 

considerations. The relevant variables for a producer to decide if the same partial ledger state 

update is found by a majority of producers are Cmin and Cmaj. Threshold considerations are 

discussed in detail in section 6.2.  

If Cj > Cmin and Cmaj > Cthreshold :  

• Pj creates a list Lj(prod) and appends to said list the identifiers of any producer Pk 

who forwarded a producer quantity hk satisfying .  

If  also appends its identifier to the list Lj(prod).  

• The producer Pj then computes a producer candidate cj as follows:  

 

 
c  (5.2)  

Where # represents a hash tree or some other compressed data structure of the list 

Lj(prod). cj corresponds to Pj’s candidate for the most popular partial ledger state 

update. A hash tree of a list is useful to quickly verify that an object (an identifier) is 

included in the list. #(Lj(prod)) is a witness of the list of producers who correctly 

generated the most popular partial ledger state update according to Pj.  

• At t ≤ tc + ∆tc0, Pj broadcasts its producer candidate cj to the other producers in the 

network. Figure 5.3 displays a flowchart describing the steps followed by Pj to create 

and broadcast cj.  

j  = h maj∆ j  || #( 

L j  

( prod))  || Id 

j  
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Figure 5.3: Flowchart illustrating the series of steps followed by a producer Pj to issue a producer candidate cj.  

Candidate collection  

Shortly after the second phase starts (at t ≈ tc), Pj starts collecting the producer candidates ck 

generated by other producers {Pk}k∈P/j in its cache. The collection lasts for a period of time ∆tc 

after which the producer holds Vj producer candidates in its cache (Vmin ≤ Vj ≤ P).  

5.2.3  Voting Phase  

During the third phase (a.k.a voting phase) of a ledger cycle, a producer Pj elects a partial ledger 

state update from the collection of producer candidates that it has received. At the end of the 

process, producers forward their vote which comprises a complete ledger state update 

including a reward to some producers.  

The third phase starts at t = tv where tv = tp + ∆tp + ∆tc and lasts for a period ∆tv, therefore 

ending at tv + ∆tv.  

Ballot generation and broadcast At t = tv:  

1. Pj verifies that the same first hash value hmaj is embedded in a majority of producer 

candidates. With ] and   

hmaj) ∀ k ∈ {Vj}], this condition is met if V maj > Vthreshold (See section 6.2 for more 

explanations).  

2. The producer Pj can only participate in the following steps if the local first hash value 

computed during the construction phase, h∆j, is equal to hmaj. Indeed, Pj needs to have 
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knowledge of the partial ledger state update of which the hash was used to vote in order 

to proceed.  

If each producer collects the first hash value generated by every producer, any two 

producers Pj and Pk would build the same list of identifiers Lj(prod) = Lk(prod). In practice, a 

producer may not have collected all P first hash values and as a result may have an incomplete 

list of identifiers, yet have collected enough data to be able to confidently issue a vote on the 

most popular partial ledger state update. We mentioned how the identifier of a producer can 

be appended to a first hash value to a) verify if Pj is a producer node selected for the ledger cycle 

and b) evaluate the quality of work performed by Pj. Indeed, Idj can be used to create and add a 

compensation entry to the ledger state update, that rewards the producer for its work 

performed during the ledger cycle. The correct (complete) list of producers who successfully 

built the correct (most popular) partial ledger state update for that cycle, Ln(prod), is used to 

create these new transaction entries and append them to the final ledger state update 

generated for that cycle. It is therefore crucial that a majority of producers succeed in 

generating that list in order to generate the same complete ledger state update. A complete 

ledger state update should comprise the list of transaction entries and transaction signatures 

included in a partial ledger state update as well as the compensation entries rewarding the 

producers.  

The voting process thus consists in creating the final list of identifiers involved in the 

production of the partial ledger state update. As explained below the final list Ln(prod) is 

obtained by merging the partial lists included in the producers’ candidate. A producer Pj could 

have produced a first hash value h∆j different to  yet added his identifier to Lj(prod) when 

building its candidate cj in the attempt to collect some token reward. In such scenario Idj would 

be an element of the list included in cj (or any other producer node controlled by Pj), but it 

wouldn’t be included in any other list {Lk(prod)}∀ k ∈ P/j. To prevent such malicious behaviour, 

a rule imposes that Pj only appends to the final list Ln(prod) the identifier of a producer included 

in the list Lk(prod) of a candidate ck satisfying  if and only if that identifier is included 

in at least P/2 lists {Lk(prod)}k=1,..,Vj associated to a candidate ck satisfying . Only a 

producer controlling half or more of the producer nodes would succeed in including its 

identifier into the final list Ln(prod).  

Although this eliminates the risk of unethical behaviour from the producer, this also means 

that there would be little incentive for a producer to broadcast its vote if its identifier was not 

included in Ln(prod). However, the probability that a producer compiles the correct final list 

Ln(prod) strongly depends on the number of votes collected. The more votes collected by a 

producer, the greater the probability that said producer will compile the complete final list.  

Although a producer may not have produced the correct partial ledger state update, 

participating in the voting process is, therefore, an important contribution to the overall 

consensus protocol and should entitle the producer nodes to some reward. To that end a 

producer Pj can use the identifier of other producers included in their vote and create a second 

list Lj(vote) to account for their participation in the voting process.  

Pj follows a series of step for a period ∆tv0 (∆tv0 < ∆tv):  
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1. Pj creates a new list Lj(vote) and appends to said list the identifier of any producer Pk who 

forwarded a candidate ck satisfying .  

2. Pj creates the final list Ln(prod) and appends to said list the identifier of a producer 

included in the list Lk(prod) of a candidate ck satisfying   if and only if that 

identifier is included in at least P/2 lists {Lk(prod)}k=1,..,Vj associated to a candidate ck 

satisfying .  

3. Pj then creates a list LCE of compensation entries for each producer whose identifier is 

included in Ln(prod). Each producer receives xh tokens. Assume that Cn ≤ P identifiers are 

included in Ln(prod) and X is the total number of tokens injected per cycle for the pool of 

P producers. The quantity xh is defined such that Cnxh = fprodX + xf where xf represents the 

total number of fees collected from the mn−1 transactions and fprod represents the fraction 

of new tokens injected per cycle and distributed to the producers who built the correct 

ledger state update. The remaining (1 − fprod)X tokens are distributed to other 

contributing nodes in the network. A part of this remainder goes to the producers who 

voted correctly on the previous ledger cycle update. Let Ln−1(vote) be the list of the 

identifiers of producers who voted correctly on the previous ledger cycle update Cn−1. We 

later demonstrate how such a list is derived during a ledger cycle. For now, let’s assume 

that LCE includes compensation entries for producers involved the production of the 

ledger state update for this ledger cycle Cn and the producers involved in the voting 

process of the preceding cycle Cn−1.  

4. Pj then creates the candidate ledger state update for Cn including the reward allocated to 

the producers for their contribution:  

LSUj = LfE || dn || LCE  

Pj then computes its vote (or producer vote):  

 vj  

j  (5.3)  

which includes the hash of the candidate ledger state update (or second hash value) and 

a partial list of identifiers of producers who designated the correct candidate partial 

ledger state update corresponding to hmaj.  

5. Pj then forwards vj to the other producers and collects the producer votes issued by its 

peers. Figure 5.4 illustrates the different steps followed by Pj during the voting phase.  

= H(LSUj ) || #(Lj (vote)) || Id 
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Figure 5.4: Flowchart illustrating the series of steps followed by a producer Pj during the voting phase of the ledger cycle.  

 

Ballot collection  

During the voting phase, the producer Pj collects the producer votes broadcast by its peers. At 

the end of the voting phase (t = tv + ∆tv), the producer Pj holds Uj producer votes in its cache with 

Uj ≤ Cn where Cn ≤ P is the actual total number of producers who correctly computed hmaj.  

5.2.4  Synchronisation Phase  

Final ledger state update generation and broadcast  

The last phase (a.k.a synchronisation phase) of a ledger cycle starts at t = ts, with ts = tn,0 +  

∆tp +∆tc +∆tv, and lasts for a period ∆ts, therefore ending at ts +∆ts = tn,0 +∆tcycle. During a period 

∆ts0 < ∆ts, Pj executes the following steps:  

1. Pj defines the ledger state update ∆Ln for the cycle Cn as:  

H(∆Ln) = max[unique(H(LSUk)) ∀ k ∈ {Uj}] and the associated number of votes collected: 

Umaj = count[(H(LSUk) = H(∆Ln)) ∀ k ∈ {Uj}] and verifies that Umaj >  

Uthreshold.  

2. Pj creates a new list Ln(vote) and append to Ln(vote) the identifier of a producer included 

in the list Lk(vote) of a vote vk satisfying H(LSUk) = H(∆Ln) if and only if the identifier is 

included in at least Cn/2 lists {Lk(vote)} associated to a producer vote vk satisfying H(LSUk) 

= H(∆Ln). Note that Cn can be easily computed as it corresponds to the number of producer 

identifiers who correctly computed the ledger state update and are therefore included in 

Ln(prod).  
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3. If Pj generated the correct ledger state update ∆Ln, it can write it to DFS which will return 

it with a content-based address An.  

4. A Producer Pj then creates the following output quantity (or producer output):  

 oj  

j  (5.4)  

The producer then broadcasts oj to the network.  

Ledger state synchronisation across the network  

During the time period [ts,ts +∆tcycle], user nodes collect {ok}∀k∈P producer outputs broadcast by 

the producers. By extracting the identifier Idk embedded in any collected output ok, a user node 

can easily compile a list of producer identifiers having broadcast the same second hash value 

H(∆Ln) (concatenated with the same list Ln(vote)). Upon receiving x > P/2 identical addresses 

{Ak = An}k∈x, the user nodes can read the common address content (∆Ln) from DFS. Using ∆Ln a 

user node can safely synchronise their local copy of the ledger and write it to their DFS if not 

already done. The balance of accounts stored on the ledger are updated and the producers 

effectively collect their rewards.  

Worker nodes also store the list Ln(vote) embedded in each ok output. If selected to be a 

producer for the next cycle Cn+1, a worker can use it to generate the reward allocated to the 

producers who correctly voted for the accurate ledger state update during the ledger cycle Cn. 

Figure 5.5 summarises the different phases of the ledger cycle.  

The various parameters and thresholds mentioned in this chapter and their impact on the 

levels of security and confidence in the successful production of a ledger state update are 

discussed in section 6.2.  

= A n  || #(L n (vote)) || Id 
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Figure 5.5: Illustration of the different phases followed by a producer during a ledger cycle.  
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Chapter 6  

Security Considerations  
Whenever financial value is stored on a distributed system, there will be greater incentive to 

attack the system in the attempt to take control of financial assets or simply disrupt the system 

to create or destroy existing assets. With no centralised entity to control access and check 

validity it is up to the peers on the network to ensure its security. Through consensus and the 

underlying protocols of the network a secure environment must be created to allow 

transactions to take place in a trust-less environment.  

6.1  Selection of Worker and Producer Nodes  
The primary attack of concern for all blockchains and DLT platforms is the subversion of their 

consensus protocol and is generally referred to as a 51% attack. Such an attack is made possible 

when an entity or group of entities collude to have enough influence on the network to produce 

a block or ledger state update with invalid transactions, in the attempt to alter the ledger 

integrity. Depending on the protocol, the influence can be in computing power or number of 

nodes and exceeds 50% of the relevant resource.  

An attack could be performed for many reasons aside attempting to steal money from a 

network, including to discredit or shake trust in a network. A consequence of a successful attack 

would likely be to reduce token prices. Although there is no tangible proof of this, it could 

explain why 51% attacks are not too common. Nevertheless, it remains important to prevent 

and mitigate the risk of an attack as much as possible.  

The probability of a 51% attack (P51) typically depends on the algorithm used to produce a 

valid block or ledger update. When considering PoW-based algorithms, P51 can be expressed as 

a function of the hash rate of network nodes. Since the consensus-based protocol on the Catalyst 

network as laid out in section 5 does not rely on solving a cryptographic puzzle, the concept of 

hash rate of nodes involved in the ledger state update is not relevant to quantify the probability 

or the cost of an attack on Catalyst network. The number of nodes involved in the production of 

a ledger state update is however relevant, as explained in this section.  

The probability of a successful 51% attack on Catalyst network implies that a malicious 

entity (or group of entities) succeeds in controlling more than half the producer nodes selected 

to produce the ledger state update during a ledger cycle, giving that entity the power to tamper 

with the ledger state. The probability P51 depends on the following parameters:  

• N : the total number of nodes in the worker pool.  

• P : the subset of producer nodes selected to perform work for one ledger cycle (P ≤ N).  

• O : the number of malicious nodes in the worker pool (0 ≤ O ≤ N). This is a total subset of 

malicious nodes colluding to perform an attack on the network.  
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• p : the number of malicious nodes in the subset P of producers. (0 ≤ p ≤ P).  

An attack can be considered successful for any value p ∈ [p0,P] where p0 = P/2 + 1 which is 

equivalent to p > 50%P. When P ≈ N, i.e. the number of producers selected during a ledger cycle 

is very close to the total number of nodes in the worker pool, the absence of a randomness 

element in the selection of P producers makes it easy to compute the probability of a successful 

attack on the network: P51 ≈ O/N. A malicious entity would know exactly when an attack can 

successfully be performed, that is when O > N/2.  

When  can there be expressed by the discrete sum:  

  )  (6.1)  

where PA(p) represents the probability of having p malicious nodes in the set P. When the 

ratio between the total number of nodes N and the number of nodes P is large (N > 20 × P) it 

can be expressed as follows:  

   (6.2)  

A represents the number of possible combinations for choosing p nodes from O malicious 

nodes. B represents the number of possible combinations for choosing good (non-malicious) 

nodes for the remaining N − O nodes in the worker pool. Finally, C corresponds to the number 

of available combinations for choosing P nodes from the pool of N nodes.  

In equation 6.2, PA(p) is the probability mass function of a hypergeometric distribution over 

the set of parameters {N,O,P}. Note that such expression is valid for max(0,O + P − N) ≤ p ≤ 

min(O,P).  

There are two main arguments behind having a large number of N nodes:  

• To account for the fact that most nodes with sufficient resources may want to join the 

worker pool and receive tokens as reward for their contribution to the ledger state 

management  

• To make it increasingly costly for any malicious entity to control more than half the nodes.  

As explained in section 2.2, prior to joining the worker pool, nodes are part of a worker 

queue. Nodes in the worker pool are granted a work pass valid for finite period time. As a result, 

a varying number of nodes leaves the worker pool at each ledger cycle. Although the size of the 

worker pool might be constant (N nodes), the selection of nodes forming the worker pool 

changes over time. The mechanism used to define a score for nodes in the work queue is 

designed to prevent malicious nodes from gaining control of a large fraction of worker nodes. 

Nevertheless, as we derive the probability P51 in this section, we must stress that the fraction 
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O/N may change (increase or decrease) over time and should be considered if computing the 

probability over a series of ledger cycles.  

When the probability of a successful attack can be estimated using the cumulative 

hypergeometric distribution function (CDF) for p ∈ [p0,P]. In this paper, we provide probability 

estimates obtained using scipy.stats Python library. The graphs presented are obtained using 

matplotlib.pyplot library. Rather than computing the CDF, the probability measurements are 

obtained using the survival probability (SDF), which is the inverse of CDF but is known to 

provide more accurate results1.  

As an example, let’s assume a rather large number of nodes in the worker pool, N = 20,000, 

out of which 5% are selected as producers for a given cycle (P = 1,000). Let’s further assume a 

ratio O/N = 20%, e.g. 1 in every 5 nodes in the worker pool is controlled by a malicious entity 

(O = 4000). The probability of a successful attack is calculated using the SDF of an 

hypergeometric distribution using these set of parameters and amounts to: P51 = 1 − 

SDF(20000,4000,1000) ≈ 10−9%. For the same set (N,P), the probability of a successful attack 

reaches 0.04% for O/N = 45% of malicious nodes in the worker pool.  

Figure 6.1 shows the probability of a successful control of more than 50% of the producers 

as a function of the number of producers for four different worker pool sizes and two attack 

scenarios: when a malicious entity controls O/N = 45% of the worker nodes in blue, and in 

orange when a malicious controls O/N = 35% of the worker nodes in blue. For N = 20000, the 

probability remains below 10−9 if P <≈ 4000 while for a smaller worker pool size (N = 5000), 

the ratio P/N must be at close to 50% to prevent a successful control of more than 50% of the 

producers.  

(a) N = 2000                                                    (b) N = 5000 

 

1 See https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.hypergeom.html for more details.  
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  (c) N = 10000  (d) N = 20000  

Figure 6.1: Probability of 51% attack as a function of P for various worker pool size (N = 
{2000,5000,10000,20000}) when a malicious entity controls O/N = 45% of the worker nodes in blue, and in 
orange when a malicious controls O/N = 35%  

Figure 6.2 displays the minimum ratio P/N required to maintain a probability P51 below 10−6 

and 10−9 for various malicious scenarios (O/N ratio between 30% and 45%) . This shows that 

as N increases the required P/N ratio required for the same security level decreases.  

  

  (a) P51 < 10−6  (b) P51 < 10−9  

Figure 6.2: This graph shows the P/N ratio required for maintaining a probability of a 51% attack below two thresholds 
(10−6 on the left and 10−9 on the right) as a function of the number N of worker nodes.  

 

This series of graphs gives a good indication on what pair of parameters (N,P) to consider 

for a high resilience to 51% attack. Given a number of nodes in the worker pool, we can deduce 

the number of producer nodes to select during one ledger cycle. Inversely, given a number of 

producers for a ledger cycle, we can define a minimum size for the worker pool. As detailed in 

the next section, the number of producers selected for a ledger cycle is important to ensure that 

a consensus can be reached on the correct ledger state update to distribute to the rest of the 

network.  

6.2  Production of a Ledger State Update  
The previous section discusses the level of security against 51% attack when a malicious 

entity controlling more than half the producer nodes can attempt to tamper with the ledger 

state update. Specifically, the security of the consensus mechanism is considered as a function 
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of the parameters (P,N). As N becomes large and the ratio P/N is low, it becomes very unlikely 

for a malicious entity to gain control of the worker pool, notwithstanding an increasingly 

expensive cost of attack.  

In this section, we explore the confidence level associated with the production of a ledger 

state update. During the last phase of a ledger cycle, each node on the network updates their 

local copy of the ledger with what they perceive as being the ledger state update generated and 

approved by the producers. Each user node must collect x > P/2 identical producer outputs from 

the producers to safely conclude that a consensus was reached amongst the producers. Recall 

that a producer Pj broadcasts its output oj = An || #(Ln(vote)) || Idj to the network. The producer 

identifier Idj is used by a user node to distinguish between the outputs generated by two 

producers. The correct address Ac(∆Ln) is thus defined by Ac(∆Ln) = max[unique(ok /| 

Idk)/|#(Ln(vote)) ∀ k ∈ {P}] with a/|b denoting a removal function of b in a, and x = count[(ok /| 

Idk) = Ac(∆Ln) || #(Ln(vote)) ∀ k ∈ {P}]. Note that if x = P, all producers agree on the correct ledger 

state update for cycle Cn.  

As laid out in section 5.2, a producer executes a series of steps in each phase of the ledger 

cycle. The producer can only move to a phase if a set of conditions are fulfilled in the previous 

phase. For a producer Pj, the first three phases consist of generating a quantity αj that obeys 

certain criteria, and then broadcasting it to its producer peers while collecting the quantities αk 

produced and broadcast by other producers {Pk}k∈P/j:  

1. Construction phase: αj = hj hj is the producer quantity generated by Pj, using the set of 

transactions stored in its mempool. It comprises the first hash value h∆j, which includes 

the partial ledger state update (excluding any compensation entry) found by Pj and the 

compressed data structure for the transaction signatures, concatenated with Pj identifier 

Idj (see equation 5.1): hj = h∆j || Idj.  

Participation All producers {Pj}∀j∈P participate in the construction phase.  

Time hj must be broadcast before tp + ∆tp0. Other producer quantities are collected during 

the time period [tp,tp + ∆tp].  

Quality Each transaction included in the ledger state update must verify a list of validity 

checks (see section 4.5).  

2. Campaigning phase: αj = cj cj is the producer candidate generated by Pj (see equation 5.2): 

 

with the hash of the most common partial ledger state update found by Pj given the 

set of first hash values collected during the construction phase. Lj(prod) is the partial list 

of identifiers compiled by Pj which includes the identifier of any producer having 

broadcast a first hash value corresponding to the most common, or candidate, partial 

ledger state update.  

Participation All producers {Pj}∀j∈P participate in the campaigning phase.  

Time cj must be broadcast before tc + ∆tc0. Other producer candidates are collected during 

the time period [tc,tc + ∆tc].  

  Quality  • The number Cj of producer quantities collected by Pj must verify Cj ≥  
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Cmin.  

• The number of identical first hash values 

{Cj}] must verify Cmaj ≥ Cthreshold.  

3. Voting phase: αj = vj vj is the producer vote generated by Pj (see equation 5.3): vj = H(LSUj) 

|| #(Lj(vote)) || Idj which includes the hash (or second hash value) of the candidate ledger 

state update LSUj = LfE || dn || LCE generated by Pj. Lj(vote) is the partial list of identifiers 

compiled by Pj which includes the identifier of any producer having broadcast a candidate 

partial ledger state update corresponding to the most common partial ledger state 

update. LCE is the list of compensation entries created using the identifiers included in the 

complete and final list Ln(prod) of Cn producers having broadcast a first hash value 

corresponding to the most common partial ledger state update. LSUj thus includes the 

compensation entries for the producers {Pk}∀j∈Cn who generated a producer quantity hk 

verifying h∆k = H(LfE || dn).  

Participation Only producers finding a ] satisfying 

hmaj = hj participate.  

Time vj must be broadcast before tv + ∆tv0. Other producer votes are collected during the 

time period [tv,tv + ∆tv].  

  Quality  • The number Vj of producer candidates collected by Pj must verify Vj ≥  

Vmin.  

• The number of identical partial ledger state update hashes 

hmaj)  

∀ k ∈ {Vj}] must verify V maj ≥ Vthreshold.  

• Ln(prod) includes the identifier of producers included in at least P/2 lists 

{Lk(prod)}k=1,..,Vj associated to a producer candidate ck satisfying .  

4. Synchronisation phase: αj = oj oj is the producer output generated and broadcast by Pj 

(see equation 5.4):  

oj = An || #(Ln(vote)) || Idj. It includes the DFS content-based address An of the approved 

ledger state update ∆Ln.  

Participation All producers {Pj}∀j∈P may participate in the synchronisation phase. 

However, only the ones having successfully compiled the ledger state update LSUj = 

∆Ln may broadcast the address An to the network.  

Time oj must be broadcast before ts +∆ts0. User nodes must collect at least x identical 

addresses An during the time period [ts,ts + ∆ts] and request the corresponding ledger 

state update to synchronise their local copy of the ledger.  

  Quality  • The number Uj of producer votes collected by Pj must verify Uj ≥ Umin.  

• The number of identical second hash values Umaj = count[(H(LSUk) = H(∆Ln)) ∀ k 

∈ {Uj}] must verify Umaj > Uthreshold.  

• Ln(vote) includes the identifier of producers included in at least Cn/2 lists  
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{Lk(vote)}k=1,..,Cn associated to a vote vk satisfying H(LSUk) = H(∆Ln). Cn 

corresponds to the number of identifiers of producers who correctly computed 

the partial ledger state update and are therefore included in Ln(prod).  

The probability P(x > P/2) that x > P/2 during the synchronisation phase depends on a series 

of criteria:  

1. (Cmin,Cthreshold): a producer needs to collect enough individual producer quantities (at least 

Cmin) and find a majority (at least Cthreshold) of identical partial ledger state update hashes 

to be able to issue a producer candidate. Cmin is typically defined as a fraction of  

P: Cmin = fCP with 0 < fC < 1. On the other hand, the definition of Cthreshold is more complex 

and depends on Cj.  

Although in theory Cthreshold could be set at Cj/2, a higher threshold must be chosen to allow 

a producer to decide on a candidate partial ledger state update in good confidence. 

Indeed, one must account for the statistical uncertainty associated to the ratio Cmaj/Cj due 

to the size of the data sample used to compute this ratio. Moreover, there should be no 

ambiguity on the choice of a candidate, should for instance a second set of identical hash 

values of size close to Cj/2 be found in an attempt to tamper with the ledger state by a 

malicious entity controlling a large number of worker nodes. The confidence interval on 

a ratio r = Cmaj/Cj is defined as:  

    (6.3)  

Where z is a score associated to the confidence level in r (z = 4.22 for a 99.999% 

confidence level) and the remaining expression is the standard error of the ratio estimate.  

In an scenario where only two types of first hash values are collected by a producer Pj,  

 compiles the two ratios r1 = x1/Cj and r2 = x2/Cj. Since x2 = 

Cj − x1, the two ratios have the same margin error: ∆r1 = ∆r2. As illustrated in Figure 6.3, if 

the margin error associated to the two ratios are such that r1 − ∆r1 < r2 + ∆r2, Pj cannot say 

with certainty that a majority of nodes agrees, even if r1 > 50%. A decision can only really 

be made if r1 > 50% + ∆r1. Figure 6.3(left) shows that for a r1 = 0.7 the producer must 

collect at least Cj = 110 data in order to remove any ambiguity with a confidence level at 

99.999%. Indeed, if r1 = 70% and Cj = 2000, the second ratio r2 would represent at best 

30% of the data collected by the producer, the statistical uncertainty on these two ratios 

would leave a significant gap between 34.3% and 65.7%. For V = 1000, that gap would be 

reduced to [36.1%,63.9%], still large enough to give enough confidence to a producer that 

a clear majority of nodes agree on a common data. This is illustrated in Figure 6.3(right) 

when R1 = 0.6. It can be seen that when Cj = 200 that there would be an overlap between 

the margin errors around r1 and r2, while when Cj = 2000 the producer can conclude with 

a confidence level of 99.999% that r1 > r2.  

Cthreshold is therefore defined for confidence level (CL) as:  

    (6.4)  
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For a confidence level at 99.999%, Cthreshold can be expressed as:  

    (6.5)  

  
Figure 6.3: Left: ri ± ∆ri (i = 1 or 2) as a function of P, the size of the producers pool, when r1 = 60%. Right: r ± 
∆r at 99.999% confidence level, for two values of P (200, 2000) when only two types of hash are collected by 
a producer, when r1 = 70%.  

2. (Vmin,Vthreshold): a producer needs to collect enough individual producer candidates (at 

least Vmin) and find a majority (at least Vthreshold) of identical partial ledger state updates 

embedded in the producer candidates to be able to issue a vote. Vmin is typically defined 

as a fraction of P: Vmin = fV P with 0 < fV < 1. Vthreshold is defined following the same approach 

considered for Cthreshold:  

    (6.6)  

3. (Umin,Uthreshold,Cn): a producer needs to collect enough individual producer votes (at least 

Umin), find a majority (at least Uthreshold) of votes with identical second hash values, and 

hold a local copy of the ledger state update corresponding to the most common second 

hash value to be able to generate a producer output including the content-based address 

of the next ledger state update stored on DFS and broadcast it across the network. Two 

producer outputs are considered identical if they include the same DFS address of a 

complete ledger state update and the same list Ln(vote). Two complete ledger state 

updates are therefore identical notably when using the same list Ln(prod) to create the 

compensation entries. The list Ln(prod) comprises the identifiers of the Cn producers that 

produced the most popular partial ledger state update (without compensation entries) 

during the construction phase. Cn is typically defined as a fraction of P: Cn = fprodP with 0 < 

fprod < 1. Umin is thus defined as a fraction of Cn: Umin = fUCn with 0 < fU < 1.  

Uthreshold is defined following the same approach considered for Cthreshold:  

    (6.7)  

In summary the probability P(x > P/2) that x > P/2 can be expressed as a function of  
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P,Cmin,Cn,Vmin,Umin:  

  

The tests conducted on the gossip protocol implemented on Catalyst suggest that a high 

percentage of nodes (95 − 99%) in a large network (O(10,000) nodes) will successfully collect 

data from all their peers. Furthermore tests on a smaller network (O(1000) nodes) such as the 

sub-networks of workers and producers in charge of producing the ledger state update during 

a ledger cycle gives the percentage of nodes collecting the data from all their peers as close to 

99 − 100%. As a result the numbers (Cj,Vj) of data collected by a producer Pj are naturally 

expected to be close to P and Uj close to Cn. A simulation analysis was done to determine the 

optimal set of parameters (Cn,Cmin,Vmin,Umin) to ensure a probability P(x > P/2) greater than 

99.999% for various sizes of the producers pool P. Figure 6.4 displays a n-ary tree (n = 4) 

illustrating the minimum sets of parameters (fprod,fC,fV ,fU) found for a pool of producers made of 

(a) 200 nodes and (b) 500 nodes when varying the parameters (fprod,fC,fV ,fU) between 0.75 and 

0.95 with a step of 0.05. We observe that for P = 200, when fprod = 80% of producers generate 

the correct ledger state update, P(x > P/2) > 99.999% when all thresholds are set at 80%. The 

values represented in the tree branches show how the thresholds naturally decrease as the 

number P of nodes in the pool of producers increases.  

  
Figure 6.4: Minimum sets of parameters (fprod,fC,fV ,fU) found for P(x > P/2) > 99.999% for P = 200 (left) and P = 500 
(right).  

Figure 6.5 shows the minimum common threshold found for (fC,fV ,fU) as a function P  

when fprod = 75% and fprod = 95%.  

At P = 1000, the two curves converge to a common threshold fC = fV = fU = 76% ± 1%. When 

fprod = 75%, we find that in approximately 95% of the 

conducted tests, x = Cn, all producers with an identifier 

included in Ln(prod) broadcast the same quantity.  

An || #(Ln(vote)). When P = 200 and fprod = 75%, a 

higher common threshold fC = fV = fU = 85% ± 1% is 

found to satisfy P(x > P/2) > 99.999% and x = Cn in 

roughly 80% of the tests.  

 

 

 

 



56 
 

 

Figure 6.5: Minimum common set of parameters (fC,fV ,fU) as a function of P when fprod = 75% (blue) and fprod = 95% (green).  
 

 

The decision regarding the thresholds chosen for generating the ledger state update thus 

depends on P. As explained in section 6.1, the choice of P as well as that of the worker pool 

size N also influence the resistance to 51% attack. Figure 6.1 shows that in order to keep 

the probability of a successful 51% attack below 1 in a billion when N = 2000, the size of 

producers must comprise at least P = 1200 producers. The simulation conducted in this 

section shows that when P ≥ 1000 a common threshold value fC = fV = fU = 80% ensures that 

a consensus can be reached at 99.999% confidence level when fprod ≥ 75% for any x value 

greater or equal to P/2.
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6.3  Signature Scheme  

6.3.1  Rogue Key Attack  

When Schnorr signatures are used to generate an aggregated signature of a transaction they 

are vulnerable to an attack known as Rogue Key attack. Rogue Key attacks performed by a 

malicious entity consists of generating an aggregated signature in such a way that they possess 

the public/private key pair for that signature. In the Schnorr signature scheme, the public key 

of participants is aggregated and the sum represent the public key associated to the signature. 

Assume that an honest participant uses its public key Qa in the transaction and a malicious 

participant possesses Qb. By sending the public key Qm = Qb − Qa to the honest participant, the 

malicious entity has access to the transaction as they will hold the private key for Qb. This is 

because when the keys are aggregated i.e. Qm + Qb the aggregated signature would be Qb, for 

which the malicious user holds the private key (the honest user would not). For an aggregated 

public key, there should be no user that has a private key equivalent as it should be used to 

create a signature that can be verified that all users in the transaction participated.  

The aggregation of public keys used in Catalyst which is based on Mu-Sig [27] signature 

scheme that is not vulnerable to this form of attack. Mu-Sig is protected from this form of attack 

as the scheme does not require a user to demonstrate each public key, only the sum of all the 

public keys. By not verifying individual public keys, a key rogue attack is not possible. Only one 

public key is needed for the verification (the aggregated key) for which there will not be an 

equivalent private key.  

6.3.2  Quantum Attack  

Quantum computers pose a very real threat to the encryption techniques used in blockchains 

in the medium to long term [28]. The threat is through the use of Shor’s algorithm. A quantum 

attacker using Shor’s algorithm on a quantum computer can gain an exponential speed-up in 

solving the discrete logarithmic problem. The assumption of security the discrete logarithmic 

functions the primary basis as to which all elliptic curve cryptography is based. This means that 

even the schema demonstrated here will be vulnerable to attack. The use of aggregated 

signatures would provide some resistance; however, this resistance would be negligible.  

It must be impressed that this is not an issue for the near term and thereby, these schemas 

are highly secure and efficient currently. The most efficient algorithm for classical computers 

to solve the discrete logarithm problem is the Pollard’s rho[30], this does not run in polynomial 

time. While Catalyst is not currently resistant to quantum attack, this is a challenge that will be 

faced by all major distributed ledgers over time.  
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Conclusion  
The individual technical components underpinning Distributed Ledger and Blockchain 

Technologies have existed for decades. As the 1st generation blockchain, Bitcoin managed to 

recombine these previously established elements in a unique fashion so as to instil and enable 

trust in a trust-less system, thus achieving decentralisation and eliminating the need for a 

centralised authority. Whilst completely revolutionary at the time, the implementation and 

expansion of this new approach uncovered limitations and hurdles to both expanded use and 

ultimately mainstream adoption. 2nd generation DLTs and blockchains built and improved upon 

this original foundation but fall short of resolving all associated issues.  

Catalyst has developed a distributed network, Catalyst, to solve the issues of previous DLTs 

and blockchains, improving upon those which came before, resolving such challenges and 

enabling an equitable and proportionate compensation to participants on the network. Catalyst 

was designed around the notion that a democratic and ethical network can exist which is 

secure, decentralised, scalable and private.  

Catalyst code base does not fork from a previously existing projects and includes original 

and innovating work, including a new collaborative and environment-friendly consensus-based 

protocol, the possibility to process both confidential and non-confidential transactions as well 

as smart contracts, an efficient peer-to-peer communication layer and a multi-level data 

architecture for a lean ledger database storing a variety of data.  

This paper gives an overview of Catalyst consensus protocol. Other papers, currently under 

preparation, give details of other technical considerations behind Catalyst Network, including 

the runtime environment and framework for smart contracts and dApps, network 

performances measurements and the technical specifications of Catalyst base code.  
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