
1

Catalyst Network: Security considerations

Authors: Darren Oliveiro-Priestnall, Dr. Pauline Bernat, Joseph Kearney and

Francesca Sage-Ling

Abstract
The scope of this paper is to estimate the level of resilience against any attempt to

tamper with the ledger state by a malicious entity (or group of entities) gaining control of a

sufficient number of producer nodes responsible for generating ledger state updates under

Catalyst consensus mechanism. Such attack is commonly referred to as a 51% attack in

consensus protocols notably based on the Proof-of-Work algorithm as it relies on any entity

controlling more than half the network resource (hashing power) allocated to the ledger

state update production. This paper also explores the level of confidence in the production

ledger state update for various sizes of the producer pool.

2

1 Security Considerations around the Consensus

Mechanism
Whenever financial value is stored on a distributed system, there will be greater incentive

to attack the system in the attempt to take control of financial assets or simply disrupt the

system to create or destroy existing assets. With no centralised entity to control access and

check the validity of assets exchanged over the network, the security and integrity of the

network and ledger is managed by the network peers. Consensus and underlying protocols

of the network are designed to allow transactions to take place and be validated in a

trustless environment.

Catalyst consensus mechanism is collaborative rather than competitive. Its protocol

described in [1] consists in several phases executed by the producers during a ledger cycle.

In order for these to reach consensus, a certain level of message propagation among the

producers need to be reached during each phase. This paper investigates the threshold

levels required that will ensure a fair and secure consensus to be reached between producer

nodes within a ledger cycle.

This paper also covers the prospect of a 51% attack against the network and how ratio

between the number of workers and producers can be chosen to prevent a malicious entity

from being enabled to control the network.

1.1 Selection of Worker and Producer Nodes
The primary attack of concern for all blockchains and DLT platforms is the subversion of

their consensus protocol and is generally referred to as a 51% attack. Such an attack is made

possible when an entity or group of entities collude to have enough influence on the

network to produce a block or ledger state update with invalid transactions, in the attempt

to alter the ledger integrity. Depending on the protocol, the influence can be in computing

power or number of nodes and must exceed 50% of the relevant resource.

An attack could be performed for many reasons aside attempting to steal money from a

network, including to discredit or shake trust in a network. A consequence of a successful

attack would likely be to reduce token prices. Although there is no tangible proof of this, it

could explain why 51% attacks are not too common. Nevertheless, it remains important to

prevent and mitigate the risk of an attack as much as possible.

The probability of a 51% attack (P51) typically depends on the algorithm used to produce

a valid block or ledger update. When considering Proof-of-Work algorithm and derivatives,

P51 can be expressed as a function of the hash rate of network nodes. As the consensus-based

protocol on the Catalyst network does not rely on solving a cryptographic puzzle, the

concept of hash rate of nodes involved in the ledger state update is not relevant to quantify

the probability or the cost of an attack on Catalyst network. The number of nodes involved

in the production of a ledger state update is however relevant, as explained in this section.

The probability of a successful 51% attack on Catalyst network implies that a malicious

entity (or group of entities) succeeds in controlling more than half the producer nodes

selected to produce the ledger state update during a ledger cycle, giving that entity the

power to tamper with the ledger state. The probability P51 depends on the following

parameters:

3

• N : the total number of nodes in the worker pool.

• P : the subset of producer nodes selected to perform work for one ledger cycle (P ≤

N).

• O : the number of malicious nodes in the worker pool (0 ≤ O ≤ N). This is a total subset

of malicious nodes colluding to perform an attack on the network.

• p : the number of malicious nodes in the subset P of producers. (0 ≤ p ≤ P).

An attack can be considered successful for any value p ∈ [p0,P] where p0 = P/2 + 1 which is

equivalent to p > 50%P. When P ≈ N, i.e. the number of producers selected during a ledger

cycle is very close to the total number of nodes in the worker pool, the absence of a

randomness element in the selection of P producers makes it easy to compute the

probability of a successful attack on the network: P51 ≈ O/N. A malicious entity would know

exactly when an attack can successfully be performed, that is when O > N/2.

When can there be expressed by the discrete sum:

P

 P51 = X PA(p) (1)

p=p0

where PA(p) represents the probability of having p malicious nodes in the set P. When

the ratio between the total number of nodes N and the number of nodes P is large (N > 20 ×

P) it can be expressed as follows:

 (2)

A represents the number of possible combinations for choosing p nodes from O malicious

nodes. B represents the number of possible combinations for choosing good (nonmalicious)

nodes for the remaining N−O nodes in the worker pool. Finally, C corresponds to the number

of available combinations for choosing P nodes from the pool of N nodes.

In equation 2, PA(p) is the probability mass function of a hypergeometric distribution

over the set of parameters {N,O,P}. Note that such expression is valid for max(0,O + P − N) ≤

p ≤ min(O,P).

There are two main arguments behind having a large number of N nodes:

• To account for the fact that most nodes with sufficient resources may want to join the

worker pool and receive tokens as reward for their contribution to the ledger state

management

• To make it increasingly costly for any malicious entity to control more than half the

nodes.

As explained in the paper dedicated to Catalyst consensus paper [1], prior to joining the

worker pool, nodes are part of a worker queue. Nodes in the worker pool are granted a work

4

pass valid for finite period time. As a result, a varying number of nodes leaves the worker

pool at each ledger cycle. Although the size of the worker pool might be constant (N nodes),

the selection of nodes actually forming the worker pool changes over time. The mechanism

used to define a score for nodes in the work queue is designed to prevent malicious nodes

from gaining control of a large fraction of worker nodes. Nevertheless, as we derive the

probability P51 in this section, we must stress that the fraction O/N may change (increase or

decrease) over time and should be taken into account if computing the probability over a

series of ledger cycles.

When the probability of a successful attack can be estimated using the

cumulative hypergeometric distribution function (CDF) for p ∈ [p0,P]. In this paper, we

provide probability estimates obtained using scipy.stats Python library. The graphs

presented are obtained using matplotlib.pyplot library. Rather than computing the CDF, the

probability measurements are obtained using the survival probability (SDF), which is the

inverse of CDF but is known to provide more accurate results1.

As an example, let’s assume a rather large number of nodes in the worker pool, N =

20,000, out of which 5% are selected as producers for a given cycle (P = 1,000). Let’s further

assume a ratio O/N = 20%, e.g. 1 in every 5 nodes in the worker pool is controlled by a

malicious entity (O = 4000). The probability of a successful attack is calculated using the

SDF of an hypergeometric distribution using these set of parameters and amounts to: P51 =

1 − SDF(20000,4000,1000) ≈ 10−9%. For the same set (N,P), the probability of a successful

attack reaches 0.04% for O/N = 45% of malicious nodes in the worker pool.

Figure 2 shows the probability of a successful control of more than 50% of the producers

as a function of the number of producers for four different worker pool sizes and two attack

scenarios: when a malicious entity controls O/N = 45% of the worker nodes in blue, and in

orange when a malicious controls O/N = 35% of the worker nodes in blue. For N = 20000,

the probability remains below 10−9 if P <≈ 4000 while for a smaller worker pool size (N =

5000), the ratio P/N must be at close to 50% to prevent a successful control of more than

50% of the producers.

1 See https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.hypergeom.html for more details.

5

 (a) N = 2000 (b) N = 5000

 (c) N = 10000 (d) N = 20000

Figure 2: Probability of 51% attack as a function of P for various worker pool size (N =

{2000,5000,10000,20000}) when a malicious entity controls O/N = 45% of the worker nodes in blue, and in

orange when a malicious controls O/N = 35%

Figure 3 displays the minimum ratio P/N required to maintain a probability P51 below

10−6 and 10−9 for various malicious scenarios (O/N ratio between 30% and 45%) . This

shows that as N increases the required P/N ratio required for the same security level

decreases.

 (a) P51 < 10−6 (b) P51 < 10−9

Figure 3: This graph shows the P/N ratio required for maintaining a probability of a 51% attack below two

thresholds (10−6 on the left and 10−9 on the right) as a function of the number N of worker nodes.

This series of graphs gives a good indication on what pair of parameters (N,P) to consider for a

high resilience to 51% attack. Given a number of nodes in the worker pool, we can deduce the

6

number of producer nodes to select during one ledger cycle. Inversely, given a number of

producers for a ledger cycle, we can define a minimum size for the worker pool. As detailed in the

next section, the number of producers selected for a ledger cycle is important to ensure that a

consensus can be reached on the correct ledger state update to distribute to the rest of the

network.

1.2 Production of a Ledger State Update
The previous section discusses the level of security against 51% attack when a malicious

entity controlling more than half the producer nodes can attempt to tamper with the ledger

state update. Specifically, the security of the consensus mechanism is considered as a

function of the parameters (P,N). As N becomes large and the ratio P/N is low, it becomes

very unlikely for a malicious entity to gain control of the worker pool, notwithstanding an

increasingly expensive cost of attack.

In this section, we explore the confidence level associated with the production of a ledger

state update. The quantities and thresholds defined during each phase of the ledger cycle

are first enumerated. The values adapted or recommended for the thresholds are then

discussed.

Figure 4: Illustration of the different phases followed by a producer during a ledger cycle.

A producer executes a series of steps in each phase of a ledger cycle, as illustrated in

Figure 4. The producer can only move to a phase if a set of conditions are fulfilled in the

previous phase. For a producer Pj, the first three phases consist of generating a quantity αj

that obeys certain criteria, and then broadcasting it to its producer peers while collecting

the quantities αk produced and broadcast by other producers {Pk}k∈P/j.

1. Construction phase: αj = hj hj is the producer quantity generated by Pj, using the set of

transactions stored in its mempool. It comprises the first hash value h∆j, which includes

the partial ledger state update (excluding any compensation entry) found by Pj and the

compressed data structure for the transaction signatures, concatenated with Pj identifier

Idj: hj = h∆j || Idj.

Participation All producers {Pj}∀j∈P participate in the construction phase.

Time hj must be broadcast before tp + ∆tp0. Other producer quantities are collected

during the time period [tp,tp + ∆tp].

7

Quality Each transaction included in the ledger state update must verify a list of

validity checks to ensure that the transaction being broadcast to the network had

a valid structure and signature.

2. Campaigning phase: αj = cj

cj is the producer candidate generated by with

 the hash of the most common partial ledger state update found by Pj given the set

of first hash values collected during the construction phase. Lj(prod) is the partial list

of identifiers compiled by Pj which includes the identifier of any producer having

broadcast a first hash value corresponding to the most common, or candidate, partial

ledger state update.The symbol # is used to represent a compressed data structure. As

explained below we considered bloom filters to compress this list of identifiers.

Participation All producers {Pj}∀j∈P participate in the campaigning phase.

Time cj must be broadcast before tc + ∆tc0. Other producer candidates are collected

during the time period [tc,tc + ∆tc].

Quality • The number Cj of producer quantities collected by Pj must verify Cj ≥ Cmin.

• The number of identical first hash values

{Cj}] must verify Cmaj ≥ Cthreshold.

3. Voting phase: αj = vj vj is the producer vote generated by Pj: vj = H(LSUj) || #(Lj(vote)) ||

Idj which includes the hash (or second hash value) of the candidate ledger state update

LSUj =

LfE || dn || LCE generated by Pj. Lj(vote) is the partial list of identifiers compiled by Pj

which includes the identifier of any producer having broadcast a candidate partial

ledger state update corresponding to the most common partial ledger state update.

LCE is the list of compensation entries created using the identifiers included in the

complete and final list Ln(prod) of Cn producers having broadcast a first hash value

corresponding to the most common partial ledger state update. LSUj thus includes the

compensation entries for the producers {Pk}∀j∈Cn who generated a producer quantity

hk verifying h∆k = H(LfE || dn).

Participation Only producers finding a

satisfying hmaj = hj participate.

Time vj must be broadcast before tv + ∆tv0. Other producer votes are collected during

the time period [tv,tv + ∆tv].

Quality • The number Vj of producer candidates collected by Pj must verify Vj ≥ Vmin.

• The number of identical partial ledger state update hashes

hmaj) ∀ k ∈ {Vj}] must verify V maj ≥ Vthreshold.

• Ln(prod) includes the identifier of producers included in at least P/2 lists

 associated to a producer candidate ck satisfying

4. Synchronisation phase: αj = oj oj is the producer output generated and broadcast by Pj: oj

= An || #(Ln(vote)) || Idj.

It includes the DFS content-based address An of the approved ledger state update ∆Ln.

Participation All producers {Pj}∀j∈P may participate in the synchronisation phase.

However only the ones having successfully compiled the ledger state update LSUj

= ∆Ln may broadcast the address An to the network.

8

Time oj must be broadcast before ts + ∆ts0. User nodes must collect at least x identical

addresses An during the time period [ts,ts + ∆ts] and request the corresponding

ledger state update to synchronise their local copy of the ledger.

 Quality • The number Uj of producer votes collected by Pj must verify Uj ≥

Umin.

• The number of identical second hash values Umaj = count[(H(LSUk) = H(∆Ln)) ∀ k ∈ {Uj}]

must verify Umaj > Uthreshold.

• Ln(vote) includes the identifier of producers included in at least Cn/2 lists

{Lk(vote)}k=1,..,Cn associated to a vote vk satisfying H(LSUk) = H(∆Ln). Cn

corresponds to the number of identifiers of producers who correctly

computed the partial ledger state update and are therefore included in

Ln(prod).

The probability P(x > P/2) that x > P/2 during the synchronisation phase depends on a

series of criteria:

1. (Cmin,Cthreshold): a producer needs to collect enough individual producer quantities (at

least Cmin) and find a majority (at least Cthreshold) of identical partial ledger state update

hashes to be able to issue a producer candidate. Cmin is typically defined as a fraction

of P: Cmin = fCP with 0 < fC < 1. On the other hand, the definition of Cthreshold is more

complex and depends on Cj.

Although in theory Cthreshold could be set at Cj/2, a higher threshold must be chosen to

allow a producer to decide on a candidate partial ledger state update in good

confidence. Indeed, one must account for the statistical uncertainty associated to the

ratio Cmaj/Cj due to the size of the data sample used to compute this ratio. Moreover,

there should be no ambiguity on the choice of a candidate, should for instance a

second set of identical hash values of size close to Cj/2 be found in an attempt to

tamper with the ledger state by a malicious entity controlling a large number of

worker nodes. The confidence interval on a ratio r = Cmaj/Cj is defined as:

 (3)

Where z is a score associated to the confidence level in r (z = 4.22 for a 99.999%

confidence level) and the remaining expression is the standard error of the ratio

estimate.

In an scenario where only two types of first hash values are collected by a producer

 andcompiles the two ratios r1 = x1/Cj and r2 = x2/Cj. Since

x2 = Cj − x1, the two ratios have the same margin error: ∆r1 = ∆r2. As illustrated in Figure

5, if the margin error associated to the two ratios are such that r1 − ∆r1 < r2 + ∆r2, Pj

cannot say with certainty that a majority of nodes agrees, even if r1 > 50%. A decision

can only really be made if r1 > 50% + ∆r1. Figure 5(left) shows that for a r1 = 0.7 the

producer must collect at least Cj = 110 data in order to remove any ambiguity with a

confidence level at 99.999%. Indeed, if r1 = 70% and Cj = 2000, the second ratio r2

would represent at best 30% of the data collected by the producer, the statistical

uncertainty on these two ratios would leave a significant gap between 34.3% and

65.7%. For V = 1000, that gap would be reduced to [36.1%,63.9%], still large enough

to give enough confidence to a producer that a clear majority of nodes agree on a

common data. This is illustrated in Figure 5(right) when R1 = 0.6. It can be seen that

9

when Cj = 200 that there would be an overlap between the margin errors around r1 and

r2, while when Cj = 2000 the producer can conclude with a confidence level of

99.999% that r1 > r2.

Cthreshold is therefore defined for confidence level (CL) as:

 (4)

For a confidence level at 99.999%, Cthreshold can be expressed as:

 (5)

Figure 5: Left: ri ± ∆ri (i = 1 or 2) as a function of P, the size of the producers pool, when r1 = 60%. Right: r ± ∆r

at 99.999% confidence level, for two values of P (200, 2000) when only two types of hash are collected by a

producer, when r1 = 70%.

2. (Vmin,Vthreshold): a producer needs to collect enough individual producer candidates (at

least Vmin) and find a majority (at least Vthreshold) of identical partial ledger state updates

embedded in the producer candidates to be able to issue a vote. Vmin is typically defined

as a fraction of P: Vmin = fV P with 0 < fV < 1. Vthreshold is defined following the same

approach considered for Cthreshold:

 (6)

3. (Umin,Uthreshold,Cn): a producer needs to collect enough individual producer votes (at

least Umin), find a majority (at least Uthreshold) of votes with identical second hash values,

and hold a local copy of the ledger state update corresponding to the most common

second hash value to be able to generate a producer output including the

contentbased address of the next ledger state update stored on DFS and broadcast it

across the network. Two producer outputs are considered identical if they include the

same DFS address of a complete ledger state update and the same list Ln(vote). Two

complete ledger state updates are therefore identical notably when using the same list

Ln(prod) to create the compensation entries. The list Ln(prod) comprises the

identifiers of the Cn producers that produced the most popular partial ledger state

update (without compensation entries) during the construction phase. Cn is typically

defined as a fraction of P: Cn = fprodP with 0 < fprod < 1. Umin is thus defined as a fraction

10

of Cn: Umin = fUCn with 0 < fU < 1. Uthreshold is defined following the same approach

considered for Cthreshold:

 (7)

In summary the probability P(x > P/2) that x > P/2 can be expressed as a function of

P,Cmin,Cn,Vmin,Umin:

The tests conducted on the gossip protocol implemented on Catalyst suggest that a high

percentage of nodes (95−99%) in a large network (O(10,000) nodes) will successfully

collect data from all their peers. Furthermore tests on a smaller network (O(1000) nodes)

such as the sub-networks of workers and producers in charge of producing the ledger state

update during a ledger cycle gives the percentage of nodes collecting the data from all their

peers as close to 99 − 100%. As a result the numbers (Cj,Vj) of data collected by a producer

Pj are naturally expected to be close to P and Uj close to Cn. A simulation analysis was done

to determine the optimal common value of the parameters

(Cn,Cmin,Vmin,Umin) to ensure a probability P(x > P/2) greater than 99.999% for various sizes

of the producers pool P.

Figure 6: Minimum common set of parameters (fC,fV ,fU) as a function of P when x ≥ 0.5P (blue) and x = Cn

(orange).

Figure 6 displays the minimum common threshold found for (fprod,fC,fV ,fU) found for

various size of pool of producers when x ≥ 0.5P and x = Cn. We observe that for P = 200,

producers generate the correct ledger state update, P(x > P/2) > 99.999% when all

thresholds are set at 79%. The figure shows how the thresholds naturally decrease as the

number P of nodes in the pool of producers increases. When P ≥ 1000, a common threshold

at 75% ensure than more than half the producers generate the same ledger state update.

The mean number of producers found to generate the same value at P = 1000 when fprod =

75% is 700, well above 0.5P.

1.3 Bloom Filters

In the previous section we denoted #(Ln(prod) and #(Ln(vote) the compressed data

structures representing the final list of producers having correctly completes the

campaigning and voting phases. The proposed method to verify that the correct list of

producers having participated in these two phases of the consensus mechanism is found by

a majority of producers for a given cycle is through the use of Bloom Filters.

11

Bloom Filters are space-efficient data structures that allow fast comparisons between

data sets as well as efficiently allowing a user to query membership of an item to a data set.

The base structure for a bloom filter is a bit vector. Bit vectors are a vector of elements

within which each element is a 0 or 1. By default in an empty bloom filter each of these

elements in the bit vector are set to 0. As elements are added to the bloom filter, a hash of

the element to be added is created. The bit value which equals the hash value has its bit

flipped to 1. The use of bloom filters allows us to compare the lists held by producers

efficiently. Given a data set, due to the nature of hashing functions each individual element

from the data set can be hashed to create a unique value. Through the use of bloom filters

you can guarantee that there will be no false negatives when querying a data set however

false positives are possible. When checking if an item is included in a bloom filter, the answer

is “No for sure, or Yes maybe”. The probability of a false positive is controlled by the size of

the bloom filter and how many elements are in the bloom filter. Given a false positive ratio

Fprob and a number of items stored in the bloom filter n the size of the bloom filter in bits is

−(n × log(Fprob)) ÷ log(2)2). Thereby there is a direct correlation between the number of

elements being added and the probability of a false positive being found in a bloom filter

[2].

Using bloom filter, a producer can easily verify a list of identifiers with the guarantee that

no identifier from a correct producer was excluded but with a non-null probability that it

includes the identifier of a producer that did not successfully completed a phase. As a result,

such producer would be able to claim some reward. Although not ideal, such scenario is not

dramatic provided that the rate of false positive count is kept low, thus impacting relatively

little the proportion of rewards distributed to the correct producers.

Figure 7(left) shows the false positive rate parameter chosen for a bloom filter as a

function of the number of producers (or item stored in the bloom filters) when selecting 5

hashing function per item, in order to maintain the false positive count of producers below

0.5 per cycle. Figure 7(right) shows the corresponding bloom filter size. For P = 2000, a

bloom filter of 3.3 kBytes is necessary and a false positive count of 0.4 is found, which

correspond to roughly 0.02% of the total number of correct producers.

Figure 7: Left: false positive rate chosen for the bloom filter storing the list of producer identifiers. Right: size

of the same bloom filter in kBytes to maintain a false positive count below 0.5 per ledgercycle. Minimum sets

of parameters (fprod,fC,fV ,fU) found for P(x > P/2) > 99.999% for P = 200 (left) and P = 500 (right).

2 Security Considerations around the Signature Scheme
Signatures for transactions on the Catalyst network are formed in a highly similar way

regardless of whether the asset transfer embedded in said transaction is confidential or

non-confidential. The signature scheme describes in the consensus paper [1] is a Schnorr

based signature scheme inspired from the Mu-Sig [3] signature scheme and presents similar

vulnerabilities, as described below.

12

2.1 Rogue Key Attack
When Schnorr signatures are used to generate an aggregated signature of a transaction they

are vulnerable to an attack known as Rogue Key attack. Rogue Key attacks performed by a

malicious entity consists of generating an aggregated signature in such a way that they

posses the public/private key pair for that signature. In the Schnorr signature scheme, the

public key of participants are aggregated and the sum represent the public key associated

to the signature. Assume that an honest participant use its public key Qa in the transaction

and a malicious participant possesses Qb. By sending the public key Qm = Qb − Qa to the honest

participant, the malicious entity have access to the transaction as they will hold the private

key for Qb. This is because when the keys are aggregated i.e. Qm + Qb the aggregated signature

would be Qb, for which the malicious user holds the private key (the honest user would not).

For an aggregated public key, there should be no user that has a private key equivalent as it

should be used to create a signature that can be verified that all users in the transaction

participated.

The aggregation of public keys used in Catalyst which is based on Mu-Sig [3] signature

scheme that is not vulnerable to this form of attack. Mu-Sig is protected from this form of

attack as the scheme does not require a user to demonstrate each public key, only the sum

of all the public keys. By not verifying individual public keys, a key rogue attack is not

possible. Only one public key is needed for the verification (the aggregated key) for which

there will not be an equivalent private key.

2.2 Quantum Attack
Quantum computers pose a very real threat to the encryption techniques used in blockchains

in the medium to long term [4]. The threat is through the use of Shor’s algorithm. A quantum

attacker using Shor’s algorithm on a quantum computer can gain an exponential speed-up in

solving the discrete logarithmic problem. The assumption of security the discrete logarithmic

functions the the primary basis as to which all elliptic curve cryptography is based. This

means that even the schema demonstrated here will be vulnerable to attack. The use of

aggregated signatures would provide some resistance, however this resistance would be

negligible.

It must be impressed that this is not an issue for the near term and thereby, these schema

are highly secure and efficient currently. The most efficient algorithm for classical

computers to solve the discrete logarithm problem is the Pollard’s rho[5], this does not run

in polynomial time. While Catalyst is not currently resistant to quantum attack, this is a

challenge that will be faced by all major distributed ledgers over time.

References
[1] J. Kearney P. Bernat and F. Sage-Ling. Catalyst Network Research: a new Consensus

Protocol. https://www.catalystnet.org/. July 2019.

[2] Thomas Hurst. Bloom Filter Calculator. https://hur.st/bloomfilter/.

[3] G. Maxwell et al. Simple Schnorr Multi-Signatures with Applications to Bitcoin.

Cryptology ePrint Archive, Report 2018/068. https://eprint.iacr.org/2018/068.

2018.

https://www.atlascity.io/
https://www.atlascity.io/
https://www.atlascity.io/
https://www.atlascity.io/
https://hur.st/bloomfilter/
https://hur.st/bloomfilter/
https://hur.st/bloomfilter/
https://hur.st/bloomfilter/
https://eprint.iacr.org/2018/068
https://eprint.iacr.org/2018/068
https://eprint.iacr.org/2018/068
https://eprint.iacr.org/2018/068
https://eprint.iacr.org/2018/068

13

[4] D. Aggarwal et al. “Quantum attacks on Bitcoin, and how to protect against them.

Quantum Physics”. In: arXiv:1710.10377 (Oct. 2017).

[5] A. Koundinya et al. “Performance Analysis of Parallel Pollard’s Rho Factoring Algorithm”.

In: arXiv:1305.4365 (May 2013).

