

Introduction to Catalyst Network
Returning to Blockchain's Founding Principles

June 20th, 2025

Version 2.0

Abstract

The blockchain industry has drifted from its founding principles. What began as a movement to

democratize finance and decentralize power has evolved into systems that recreate the very

exclusivity they sought to replace. Ethereum requires $100,000+ to run a validator. Bitcoin

mining is dominated by industrial data centers. DeFi governance is controlled by whales and

venture capital.

Catalyst Network returns to blockchain's roots through concrete technical innovations: a

collaborative consensus mechanism that rewards work over wealth, a modular architecture

supporting multiple runtime environments, and native Web2 integration that makes blockchain

accessible to traditional developers. Built on mathematical foundations that actively resist

centralization, Catalyst demonstrates that true decentralization is not just an ideal—it's an

achievable technical reality.

This is blockchain as it was meant to be: open, inclusive, and empowering for everyone.

1. The Problem: Blockchain's Centralization Drift ... 1

2. Catalyst's Technical Solution .. 2

2.1 Collaborative Consensus: How It Works .. 2

2.2 Multi-Runtime Architecture: Beyond Single-Language Constraints 3

2.3 Service Bus: Making Blockchain Accessible to Web2 .. 4

3. Fair Launch: Technical and Economic Benefits .. 6

3.1 Implementation Strategy ... 6

3.2 Comparison with Other Launch Models .. 7

3.3 Economic Model in Detail .. 7

3.4 Economic Incentive Alignment .. 8

4. Technical Architecture Deep Dive .. 9

4.1 Consensus Security Model ... 9

4.2 Service Bus Technical Implementation .. 10

5. Development Roadmap and Milestones ... 12

5.1 Phase 1: Foundation (Q3-Q4 2025) ... 12

5.2 Phase 2: Integration (Q1-Q2 2026) .. 12

5.3 Phase 3: Expansion (Q3 2026+) ... 13

6. Why Catalyst Succeeds Where Others Struggle .. 14

6.1 Technical Advantages ... 14

6.2 Economic Advantages .. 14

6.3 Adoption Advantages ... 14

7. Getting Started .. 15

7.1 For Node Operators ... 15

7.2 For Developers ... 15

7.3 For Community .. 16

8. Conclusion ... 17

References ... 19

 1 Private & Confidential

1. The Problem: Blockchain's Centralization Drift

The Original Promise

In 2009, Bitcoin introduced a revolutionary concept: a financial system where anyone could

participate as an equal. No banks, no gatekeepers, no minimum wealth requirements. Just

download the software, contribute to the network, and earn rewards proportional to your

contribution.

The Reality Today

Modern blockchains have recreated traditional finance's exclusivity:

Ethereum Proof-of-Stake: Requires 32 ETH (~$100,000+) to run a validator

Bitcoin Mining: Dominated by industrial farms with million-dollar ASIC investments

DeFi Governance: Controlled by token whales and institutional investors

Developer Barriers: Complex tooling that requires blockchain-specific expertise

The industry that promised to "bank the unbanked" now requires significant wealth just to

participate meaningfully.

The Mathematical Reality of Centralization

Current systems exhibit measurable centralization:

Ethereum: Top 10 staking pools control >60% of validators

Bitcoin: Top 4 mining pools control >50% of hash rate

Governance: Median DeFi proposal requires $100K+ in tokens to have meaningful impact

 2 Private & Confidential

2. Catalyst's Technical Solution

2.1 Collaborative Consensus: How It Works

Unlike competitive mining or wealth-based staking, Catalyst uses a collaborative consensus

mechanism where nodes work together through a four-phase process:

1. Construction Phase

• All producer nodes build candidate ledger updates from the transaction pool

• No computational puzzles or token requirements

• Success depends on correctly processing transactions, not solving arbitrary problems

2. Campaigning Phase

• Nodes propose their candidate updates to peers

• Majority agreement emerges through mathematical comparison

• Uses statistical confidence intervals to prevent manipulation

3. Voting Phase

• Nodes vote on the most popular candidate

• Requires supermajority (>67%) for consensus

• Weighted by contribution history, not token holdings

4. Synchronization Phase

• Final ledger update distributed across network

• All nodes update their local state

• Rewards distributed proportionally to contribution

 3 Private & Confidential

Why This Prevents Centralization:

The mathematical foundation uses hypergeometric distribution to model attack resistance:

P₅₁ = Probability of controlling >50% of producers

P₅₁ ≈ 10⁻⁹ when attacker controls <45% of network with 1000+ producers

Unlike PoS where wealth concentration naturally occurs, or PoW where economies of scale favor

large operators, collaborative consensus actively punishes centralization attempts through:

• Resource requirements scale linearly: No economies of scale for large operators

• Geographic distribution incentives: Network latency penalties for concentrated

infrastructure

• Sybil resistance: Resource proofs prevent fake node creation without expensive

hardware requirements

2.2 Multi-Runtime Architecture: Beyond Single-Language Constraints

Current blockchains lock developers into single execution environments. Catalyst's modular

design supports multiple runtime environments simultaneously:

Initial Runtime Support

rust

// EVM Module - Ethereum compatibility

pub struct EVMRuntime {

 vm: ethereum_vm::VM,

 storage: Arc<dyn Storage>,

}

// SVM Module - Solana compatibility

pub struct SVMRuntime {

 runtime: solana_runtime::Runtime,

 accounts: AccountsDB,

}

// Native Module - Rust/WASM execution

pub struct NativeRuntime {

 wasm_engine: wasmtime::Engine,

 scheduler: TaskScheduler,

}

 4 Private & Confidential

Why This Matters

• Developer Choice: Use the environment that fits your application

• Migration Path: Move existing contracts without rewriting

• Performance Optimization: Choose the runtime optimized for your use case

• Future-Proofing: Add new runtimes as languages evolve

Technical Implementation

Each runtime operates in isolated sandboxes with shared access to:

• Global State: Cross-runtime state synchronization

• Event System: Inter-runtime communication

• Resource Metering: Fair resource allocation across runtimes

• Security Boundaries: Prevent runtime vulnerabilities from affecting others

2.3 Service Bus: Making Blockchain Accessible to Web2

Traditional blockchain integration requires developers to learn new paradigms, polling

strategies, and complex transaction management. Catalyst's service bus treats blockchain

events like any other message queue:

How It Works

javascript

// Traditional Web2 approach

const bus = new CatalystServiceBus({

 endpoint: 'wss://catalyst-events.network',

 filters: ['token_transfer', 'contract_event']

});

// Listen for events like any message queue

bus.on('token_transfer', (event) => {

 updateUserBalance(event.to_address, event.amount);

 sendNotification(event.to_address, 'Payment received');

});

// No blockchain expertise required

 5 Private & Confidential

Technical Architecture

┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐

│ Blockchain │───▶│ Event Filter │───▶│ Service Bus │

│ Events │ │ & Transform │ │ (WebSocket) │

└─────────────────┘ └─────────────────┘ └─────────────────┘

 │

 ┌───────▼───────┐

 │ Web2 Apps │

 │ - Node.js │

 │ - Python │

 │ - Java/.NET │

 │ - PHP/Ruby │

Real-World Example: E-commerce Integration
python

Add blockchain payments to existing Django app

from catalyst import ServiceBus

def setup_payment_listener():

 bus = ServiceBus('wss://catalyst-events.network')

 @bus.on('payment_confirmed')

 def handle_payment(event):

 order = Order.objects.get(id=event.metadata.order_id)

 order.status = 'paid'

 order.save()

 send_confirmation_email(order.customer.email)

 bus.start()

No smart contract knowledge required

No transaction polling or Web3 complexity

Just normal event-driven programming

 6 Private & Confidential

3. Fair Launch: Technical and Economic Benefits

Why Fair Launch Matters

Technical Reasons:

• Network Resilience: Wide distribution prevents single points of failure

• Genuine Decentralization: No pre-allocated advantages or insider control

• Organic Growth: Network value derives from utility, not speculation

• Security Model: More distributed validators = stronger consensus

Economic Reasons:

• Reduced Regulatory Risk: No securities concerns from token sales

• Merit-Based Distribution: Tokens earned through contribution

• Sustainable Economics: Value tied to network usage, not hype cycles

• Global Accessibility: Anyone can participate regardless of geography or wealth

3.1 Implementation Strategy

Phase 1: Genesis Launch (Month 1-3)

Initial State:

- 0 KAT tokens in circulation

- Open source node software released

- Anyone can run a node and start earning

- Rewards: 100% from network inflation (1-2% annually as network grows)

Phase 2: Transaction Economy (Month 3-12)

Growing Economy:

- Users begin transacting, generating fees

- Validators earn both inflation rewards and transaction fees

- Service providers (storage, compute) enter the ecosystem

- Economic activity drives token utility and distribution

Phase 3: Self-Sustaining Network (Year 1+)

Mature Network:

- Transaction fees cover most validator costs

- Inflation rate adjusts based on network needs

- Rich ecosystem of applications and services

- Global, distributed validator set

 7 Private & Confidential

3.2 Comparison with Other Launch Models

Launch Type Initial Distribution Centralization Risk Regulatory

Risk

Accessibility

ICO/Token Sale Concentrated among

buyers

High (wealth-based) High

(securities)

Low (requires capital)

Pre-mine Team/investor allocation Very High Medium Very Low

PoW Launch Miners with hardware Medium (hardware

costs)

Low Medium (hardware

barrier)

PoS Launch Stakers with tokens High (wealth-based) Medium Low (token

requirement)

Catalyst Fair

Launch

Merit-based earning Low (work-based) Low (no sale) High (open

participation)

3.3 Economic Model in Detail

Token Design Philosophy

KAT (Catalyst Token) is engineered for utility, not speculation:

Supply Mechanics

• Dynamic Inflation: 1-2% annually, adjusted based on network needs

• No Maximum Supply: Allows network to grow without artificial scarcity

• Fee Burning Option: Future governance can implement fee burning if needed

• Work-Based Distribution: Tokens earned through network contribution

Fee Structure

Transaction Fees = Base Fee + Priority Fee + Resource Usage

Where:

- Base Fee: Minimal cost to prevent spam (~$0.001-0.01)

- Priority Fee: Optional fast-lane processing

- Resource Usage: Storage, compute, bandwidth consumed

Reward Distribution

rust

pub struct RewardCalculation {

 validator_work: u64, // Consensus participation

 storage_provided: u64, // IPFS hosting

 compute_cycles: u64, // Smart contract execution

 network_uptime: f64, // Reliability bonus

}

impl RewardCalculation {

 8 Private & Confidential

 pub fn calculate_reward(&self, total_pool: u64) -> u64 {

 let work_score = self.validator_work +

 self.storage_provided +

 self.compute_cycles;

 let uptime_multiplier = self.network_uptime;

 (work_score as f64 * uptime_multiplier * total_pool as f64 /

 network_total_work_score as f64) as u64

 }

}

3.4 Economic Incentive Alignment

For Validators

• Predictable Income: Steady rewards for consistent participation

• Low Barriers: No large upfront investment required

• Scalable Participation: Can increase contribution over time

• Geographic Distribution: Latency advantages for global distribution

For Developers

• Low Transaction Costs: Build applications without prohibitive fees

• Familiar Integration: Web2-style development experience

• Multiple Runtimes: Choose the best environment for your application

• Growing User Base: Network designed for mainstream adoption

For Users

• Accessible Participation: Can earn through various contributions

• Low Costs: Minimal fees for transactions and services

• Real Utility: Applications that solve actual problems

• Self-Sovereignty: Own keys, own data, own participation

 9 Private & Confidential

4. Technical Architecture Deep Dive

Modular Framework Design

rust

// Core architecture enabling pluggable components

pub trait NetworkModule: Send + Sync {

 async fn start(&self) -> Result<()>;

 async fn broadcast(&self, msg: Message) -> Result<()>;

 async fn subscribe(&self) -> impl Stream<Item = NetworkEvent>;

}

pub trait ConsensusModule: Send + Sync {

 async fn propose_block(&self, txs: Vec<Transaction>) -> Result<Block>;

 async fn validate_block(&self, block: &Block) -> Result<bool>;

 async fn finalize_block(&self, block: Block) -> Result<()>;

}

pub trait RuntimeModule: Send + Sync {

 async fn execute(&self, code: &[u8], input: &[u8]) -> Result<ExecutionResult>;

 fn supported_languages(&self) -> Vec<Language>;

 fn resource_requirements(&self, code: &[u8]) -> ResourceEstimate;

}

4.1 Consensus Security Model

The collaborative consensus provides several security guarantees:

Byzantine Fault Tolerance

• Tolerance: Network remains secure with <33% malicious nodes

• Finality: Probabilistic finality with exponentially decreasing revert probability

• Liveness: Network continues operating with >67% honest nodes

Economic Security

Cost of Attack = (Network Size × Hardware Cost) + (Opportunity Cost × Time)

Where traditional PoS:

Cost of Attack = Token Price × Required Stake

Catalyst's model makes attacks expensive through resource requirements, not token holdings.

 10 Private & Confidential

Sybil Resistance

• Resource Proofs: Nodes must demonstrate actual computing resources

• Network Participation: Long-term participation history affects selection probability

• Geographic Distribution: Network topology awareness prevents concentration

4.2 Service Bus Technical Implementation

Event Processing Pipeline

rust

pub struct EventProcessor {

 blockchain_listener: BlockchainEventListener,

 filter_engine: EventFilterEngine,

 transformer: EventTransformer,

 distributor: EventDistributor,

}

impl EventProcessor {

 pub async fn process_block_events(&self, block: &Block) -> Result<()> {

 let raw_events = self.blockchain_listener.extract_events(block).await?;

 for event in raw_events {

 let filtered_event = self.filter_engine.apply_filters(&event).await?;

 if let Some(filtered) = filtered_event {

 let transformed = self.transformer.transform(filtered).await?;

 self.distributor.distribute(transformed).await?;

 }

 }

 Ok(())

 }

}

 11 Private & Confidential

WebSocket API for Real-time Events

javascript

// Client-side integration

const catalyst = new CatalystClient({

 endpoint: 'wss://node.catalyst.network',

 filters: {

 contracts: ['0x123...', '0x456...'],

 events: ['Transfer', 'Approval'],

 addresses: ['user_wallet_address']

 }

});

catalyst.onEvent('Transfer', (event) => {

 console.log('Token transfer:', event);

 // Standard JSON event format

 // No blockchain-specific knowledge required

});

 12 Private & Confidential

5. Development Roadmap and Milestones

5.1 Phase 1: Foundation (Q3-Q4 2025)

Core Infrastructure

• ✅ Collaborative consensus implementation in Rust

• ✅ Basic EVM runtime integration

• ✅ P2P networking with libp2p

• ✅ Local storage with RocksDB

• ✅ Fair launch genesis tooling

Deliverables:

• Testnet with 100+ validator nodes

• EVM compatibility demonstrated with Ethereum contract deployments

• Performance benchmarks vs. Ethereum/Solana

• Open source node software release

5.2 Phase 2: Integration (Q1-Q2 2026)

Web2 Bridge and Multi-Runtime

• ✅ Service bus implementation with WebSocket APIs

• ✅ SVM runtime integration for Solana compatibility

• ✅ IPFS-based distributed file system

• ✅ Developer SDK for major languages (JavaScript, Python, Rust, Go)

Deliverables:

• Production-ready service bus with 99.9% uptime SLA

• Migration tools for Ethereum and Solana applications

• Developer documentation and tutorials

• Mobile wallet applications

 13 Private & Confidential

5.3 Phase 3: Expansion (Q3 2026+)

Ecosystem Growth and Advanced Features

• Additional runtime environments (WASM, native code)

• Cross-chain bridges to major networks

• Advanced privacy features (zero-knowledge proofs)

• Enterprise integration tools and support

Success Metrics:

• 1000+ active validator nodes globally distributed

• 100+ applications deployed across multiple runtimes

• $1M+ monthly transaction volume

• 10,000+ daily active users

 14 Private & Confidential

6. Why Catalyst Succeeds Where Others Struggle

6.1 Technical Advantages

Consensus Innovation: Collaborative mechanism provides energy efficiency of PoS with

decentralization properties better than PoW

Runtime Flexibility: Multi-environment support reduces migration friction and increases

developer choice

Web2 Integration: Service bus eliminates the "blockchain learning curve" for traditional

developers

Modular Architecture: Components can evolve independently, preventing technical debt

accumulation

6.2 Economic Advantages

Fair Distribution: Work-based rewards create sustainable, merit-driven economics

Low Barriers: Anyone can participate and earn, creating larger, more distributed validator set

Utility Focus: Token design optimizes for usage and network growth over speculation

Cost Efficiency: Collaborative consensus keeps transaction fees low while maintaining security

6.3 Adoption Advantages

Developer Experience: Familiar tools and integration patterns accelerate adoption

User Accessibility: Low costs and intuitive applications drive mainstream usage

Enterprise Readiness: Modular design and Web2 integration fit existing IT infrastructure

Global Reach: No wealth or hardware barriers enable worldwide participation

 15 Private & Confidential

7. Getting Started

Below are the planned steps to get started as different user types. Currently these are not in

place but are added as placeholders for what is being worked towards.

7.1 For Node Operators

bash

Download and run a Catalyst node

curl -sSf https://get.catalystnet.org | sh

catalyst-node --validator --config mainnet

Start earning KAT tokens immediately

Requirements:

• Standard computer (2+ CPU cores, 4GB+ RAM, 100GB+ storage)

• Reliable internet connection

• No special hardware or large token holdings required

7.2 For Developers

Deploy an Ethereum Contract

bash

Use existing Ethereum tools

truffle migrate --network catalyst

or

hardhat deploy --network catalyst

Integrate with Service Bus

python

from catalyst import ServiceBus

bus = ServiceBus('wss://events.catalystnet.org')

@bus.on('payment_received')

def handle_payment(event):

 # Normal Python code - no blockchain complexity

 process_order(event.amount, event.customer_id)

bus.start()

 16 Private & Confidential

7.3 For Community

• Discord: https://discord.gg/3JmXRXv

• GitHub: https://github.com/catalyst-network

• API Documentation: https://catalyst-network.github.io/Catalyst/api/

• Community Documentation: https://github.com/catalyst-network/Community

https://discord.gg/3JmXRXv
https://github.com/catalyst-network
https://catalyst-network.github.io/Catalyst/api/
https://github.com/catalyst-network/Community

 17 Private & Confidential

8. Conclusion

Catalyst Network demonstrates that blockchain's founding principles are not incompatible with

technical sophistication or mainstream adoption. Through concrete innovations in consensus

design, runtime architecture, and developer experience, we prove that true decentralization is

achievable without sacrificing performance, security, or usability.

The collaborative consensus mechanism mathematically prevents centralization while

maintaining security. Multi-runtime support gives developers choice without forcing ecosystem

fragmentation. The service bus makes blockchain accessible to millions of existing developers

without requiring them to abandon their expertise.

Most importantly, the fair launch model ensures that Catalyst's benefits flow to those who

contribute to its success, not those who can afford to buy their way in.

The blockchain industry needs a course correction. Catalyst Network provides the technical

foundation for that change, proving that we can build systems that are simultaneously powerful

and inclusive, sophisticated and accessible, secure and democratic.

This is blockchain as it was meant to be: a technology that empowers everyone, not just the few.

 18 Private & Confidential

9. Technical Resources

• Consensus Protocol Paper: https://catalystnet.org/media/CatalystConsensusPaper.pdf

• GitHub Repository: https://github.com/catalyst-network

• API Documentation: https://catalyst-network.github.io/Catalyst/api/

• Node Setup Guide: [coming soon

• Service Bus API: [coming soon]

• Community Discord: https://discord.gg/3JmXRXv

https://catalystnet.org/media/CatalystConsensusPaper.pdf
https://github.com/catalyst-network
https://catalyst-network.github.io/Catalyst/api/
https://discord.gg/3JmXRXv

 19 Private & Confidential

References

1. V. Tabora, “The Evolution of the internet, From Decentralised to Centralised”,

https://hackernoon.com/the-evolution-of-the-internet-fromdecentralized-to-

centralized-3e2fa65898f5, March 2018

2. D. McCann, “Data Oligarchs: Power and Accountability in the Digital Economy”,

https://neweconomics.org/uploads/files/Rise-of-the-dataoligarchs.pdf, May 2018

3. T. Berners-Lee, “30 Years on, What Next For The Web?”,

https://webfoundation.org/2019/03/web-birthday-30/, March 2019

4. IBM, “What’s the potential ROI of IBM Blockchain?”, https://www.ibm.com/uk-

en/blockchain, July 2018

5. M. Walport et al., “Distributed Ledger Technology: beyond block chain”,

https://assets.publishing.service.gov.uk/government/uploads/system/uploa

ds/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf,

2016

6. D. Roe, “10 Obstacles to Enterprise Blockchain Adoption”,

https://www.cmswire.com/information-management/10-obstacles-toenterprise-

blockchain-adoption/, June 2018

7. Ameya, “Sybil Attack and Byzantine Generals Problem”,

https://medium.com/coinmonks/sybil-attack-and-byzantine-generals- problem-

2b2366b7146b, July 2018.

8. C. Sherlock et al., “Efficiency of delayed-acceptance random walk Metropolis

algorithms”, arXiv:1506.08155v1

9. S. Gal-On et al. “Exploring CoreMark – A Benchmark Maximizing Simplicity and

Efficacy”, https://www.eembc.org/techlit/articles/coremarkwhitepaper.pdf

10. IPFS, “IPFS is the distributed web”, https://ipfs.io/

11. Digiconomist, “Ethereum Energy Consumption Index (beta)”,

https://digiconomist.net/ethereum-energy-consumption, 2019

12. P. Bernat et al, “Catalyst Network: the Consensus Protocol”. Available under NDA.

 20 Private & Confidential

13. Hibryda, “Why Solidity isn’t Solid”, https://medium.com/@Hibryda/whysolidity-isnt-

solid-3341af77fc1c, June 2016

14. “Catalyst Network: Smart Contracts and dApps”. Report soon available.

15. B. Wang, “Ethereum is About 1 Million Times Less Efficient for Storage, Network and

Computation”, https://www.nextbigcoins.io/ethereum-isabout-1-million-times-less-

efficient-for-storage-network-and-computation/, August 2018

16. “Catalyst Network: Tokenomics”. Report soon available.

17. “Catalyst Network: Catalyst Council Chart”. Available upon request.

